用户名: 密码: 验证码:
含硒氨基酸的电化学特性研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硒是人体必需的微量元素之一,其生物活性和生理作用主要是源于含硒氨基酸的电子传递和电子转移。因此采用电化学方法研究含硒氨基酸的电子转移特性,可以更简便地探讨其生物氧化还原作用机理,开展含硒氨基酸的形态分析。含硒氨基酸是人体获取硒的主要来源,测定食品硒源及富硒保健品中的含硒氨基酸含量对研究其生物作用机理、充分利用硒资源具有非常重要的意义。
     在硒-金膜修饰玻碳电极((Se-Au)/GC)上,采用循环伏安法研究了硒代胱氨酸(SeC)和硒代蛋氨酸(SeMet)的电化学特性,SeC在-654 mV和-327 mV附近出现一对氧化还原峰(峰Ⅱ和峰Ⅲ),均为扩散控制。探讨了pH值,扫描速度,各种干扰等对SeC电化学信号的影响。利用伏安法、计时电量法及旋转圆盘电极法对其氧化还原过程进行研究,得出其的电子转移数均为2。推断SeC的电化学反应机理为:除氧条件下SeC的二硒键(Se-Se)在电极表面断裂,电还原生成硒代半胱氨酸(SeCys):SeCys与电极上的单质硒形成类似于二硒键的分子间作用力,使SeCys保持相对的稳定性,其电氧化生成SeC。而在相同条件下,因硒代蛋氨酸(SeMet)没有二硒键,没有产生电化学信号。在空气饱和的底液中,还原产生的SeCys有一部分会被溶液中的氧气氧化成SeC,从而构成一个平行催化体系。而另一部分则继续在电极上氧化产生SeC。
     依据SeC的还原峰电流(ip_Ⅱ)与其浓度成线性递增关系,在充分探讨多种影响因素的基础上建立了(Se—Au)/GC电极上微分脉沖伏安法测定SeC含量的新方法,其线性范围为5.0×10~(-8)~7.0×10~(-4) mol·L~(-1),检出限为3×10~(-8) mol·L~(-1)。测定了富硒酵母和富硒茶叶中SeC的含量。采用常用的DAN荧光法测定了普通茶叶、普通茶汤、普通茶叶水解液、富硒茶叶、富硒茶汤、富硒茶叶水解液中的总硒量,并对样品中的硒的存在形态进行了探讨,富硒酵母中的硒大部分为氨基酸状态的硒,其中硒代胱氨酸约占总硒量的40%。富硒茶叶水解液中的硒大部分为氨基酸状态的硒,其中硒代胱氨酸约占总硒量的24%,一小部分为浸出的无机硒和小分子的硒物质。在饮茶时,富硒茶叶的茶汤中浸出的仅为较少的水溶性的硒(无机硒和小分子的硒物质),大部分的硒还留在茶叶中,饮用茶水并未充分利用茶叶中的硒。
    
     摘要
     根据150“测量不确定度表示导则”对(Se一Au)/GC电极上微分脉冲伏安
    法测定富硒酵母及富硒茶叶中的SeC含量所产生的不确定度进行了研究,对所
    建立的新方法及其测定结果进行了评估。结果表明新方法结果可靠,与其他成熟
    方法所产生的不确定度结果相当,具有实际应用价值。
Selenium is one of biotrace elements, and its biological activation and physiological function is based on the electron transmition and shift of selenium amino acid mainly. Studies of the electron transmit characteristics of selenoamino acids using the electrochemical methods to can probe into their biological oxidize and reduce mechanism simply and conveniently, and develop the specific analysis of selenoamino acids. Selenoamino acids are the main selenium-source in people's daily meal. Determination of selenoamino acids in the food selenium-source and rich selenium health products has very important meanings to their biological mechanism and fully using.
    The electrochemical characteristics of SeC and SeMet on Se-Au film modified glassy carbon electrode ((Se-Au) /GC) are studied with cyclic voltammetry. It's showed that SeC has one cathodic peak-654mV and one anodic peak at -327mV, respectively. Several parameters of the voltammetric determination, such as the kind of electrolytes scan rate, pH value, were investigated. Electrochemical process of SeC was 2H+/2e- by voltammetry, chronocoulometry and rotating disk electrode. The electrochemical reaction mechanism of SeC was that SeC in solution was reduced to SeCys at the electrode surface by cracking the Se-Se bond, then, SeCys was oxidized to SeC. Under the air-saturated condition, a part of SeCys was oxidized to SeC by O2 in solution and this chemical reaction catalyzed the electrochemical reduce process of SeC. SeMet was electrochemically inactive due to no Se-Se bond.
    At (Se-Au) / GC electrode the peak current (ipn) and the concentration of SeC had linear relationship. Its linear range is 5.0X 10-8~7.0X 10-4 mol L-1, and a 3 detection limit is 3.0 X 10-8 mol L-1 SeC. This paper set up a new method of SeC determination by differential pulse voltammetry at the (Se-Au) / GC electrode. The content of SeC of the selenized yeast and selenized tea was determined. By using DAN fluorescence method, the paper determined the total selenium of the ordinary tea, ordinary tea lixivium solution, ordinary tea hydrolysis solution, selenized tea,
    
    selenized tea lixivium solution, and selenized tea hydrolysis solution. The result indicates that the state of selenium in the selenized yeast is selenoamino acids mostly, and SeC accounts for 40%. There are selenoamino acid states mostly in selenized tea hydrolysis solution. SeC accounts for 24%, and one small part is inorganic selenium and small molecule state selenium. When people drink tea, only less water soluble selenium (mainly on inorganic selenium and small molecule state selenium) was drunk, and most selenium still stay in tea-leaf, so drinking tea has not fully utilized selenium in tea.
    According the"guide to the expression of uncertainty in measurement (ISO: 1993E)", uncertainty was calculated of determination of SeC in selenized yeast and selenized tea by differential pulse voltammetry at the (Se-Au) / GC electrode. Result indicates that the new method is reliable. Uncertainty of this new method was equal to that of other mature methods, so the new method can be used in practical application.
引文
[1] G.Milazzo,Martin Blank合编,肖科等译,梅慧生等校.生物电化学生物氧化还原反应.天津:天津科学技术出版社,1990
    [2] 田昭武,苏文煅.电化学.1995,1:375
    [3] 白燕.生物电化学在学科交叉中发展.科学技术与辩证法,1997,14(3):51~54
    [4] 董绍俊,车广礼,谢远武.化学修饰电极.北京:科学出版社,1995
    [5] 郑文杰,欧阳政.植物有机硒的化学及其医学应用.广州:暨南大学出版社,2001
    [6] Kvicala J. Selenium and organism. Cas-Lek-cesk, 1999, 138(4): 99~106
    [7] Xu Hui-Bi(徐辉碧),Huang Kai-Xun(黄开勋).Selenium:Its Chemistry、Biochemistry and Application in Life Science(硒的化学、生物化学及其在生命科学中的应用)[M], Wuhan: Huazhong Technological University Press,1994:104~105
    [8] Behne D, Weiss-Nowak C, Kalchlosch M, et al. Studies on the distribution and characteristics of new mammalian selenium-containing proteins. Analyst, 1995, 120: 823~825
    [9] Berry M J, Banu L, Larsen P R. Type Ⅰ iodothyronine deiodinase is a selenocysteinecontaining enzyme. Nature, 1991, 339:438~440
    [10] Hubert N, Walczak T, Carbon P, et al. A protein binds the selenocysteine insertion element in the 3'-UTR of mammalisn selenoprotein mRNAs. Nucleic Acids Research, 1996, 278(3):464~469
    [11] P.Rach, H.Seiler. Polarography and voltammetry in trace analysis, Huthig. Heidellberg, 1987
    [12] 侯志强,郭玉杰.线性极谱与电位溶出分析在微量元素检测中的应用.世界元素医学,2001,8(1):68
    [13] B. Nygard, Ark.Kemi. 1967, 27:342
    [14] A. Calusaru, V. Voicu. J. Electroanal. Chem., 1971, 32:427
    [15] R W Andrews, R A Grier. Cathodic stripping voltammetry of selenocystine, cystine, and cysteine in dilute aqueous acid. Analytica ChimicaActa, 1981, 124:333~339
    
    
    [16] R E Huber, R S Criddle. Arch Biochem Biophys, 1967, 122: 164
    [17] Maria Ochsenkuhn-Petropoulou, Fotis Tsopelas. Speciation analysis of selenium using voltammetric techniques. Anal.Chim.Acta, 2002, 467:167~178
    [18] 高小霞.电分析化学导论.北京:科学出版社,1980:405~410
    [19] 彭图治,王国顺.电分析化学(分析化学手册第四册).北京:化学工业出版社,1999:493~517
    [20] 郑文杰,曾鑫华,白燕.硒杂环化合物(4,5-苯并苤硒脑)在金表面上的自组装.化学物理学报,2002,15(6):461
    [21] 郑文杰,曾鑫华,杨芳,白燕等.硒芳香杂环化合物的光谱和电化学性质.分析科学学报,2003,19(1):36
    [22] 程涛.半胱氨酸和硒代半胱氨酸的生物电化学研究.暨南大学2001级硕士毕业论文
    [23] 白燕,李蕊,程涛,郑文杰,孟建新.正交设计和均匀设计用于硒-金膜修饰电极制备条件的选择.分析试验室,2003,22(6):9-12
    [24] 廖宝凉,徐辉碧,邢军等.华中理王大学学报,1991,19(1):21
    [25] FUrsini, M Maiormo, M Valente, et al. Viochim.Biophys.Acta, 1982, 710:197
    [26] 徐光禄等.西安医科大学学报,1997,18(3):295
    [27] 杨光圻.中国地方病学杂志,1989,8(5):298
    [28] YuShuyu(于树玉等)et al. Biol. Trace. Elem. Res, 1997, 56:117
    [29] L.C.Clark, et al. J.Am.Med.Asso, 1996, 276:1957
    [30] Margaret P Rayman. The Lancet, 2000, 356(7): 233
    [31] Schrauzer G N. Bioinorg Chem, 1983, 8(3): 303
    [32] C.Ip, M.Birringer, E.Block, et al. J.Agric.FoodChem, 2000, 48:2062
    [33] 梁晓岚,陈春林.茶叶中硒的研究进展.福建茶叶,1994(3):16~17
    [34] 靳利娥.气相色谱法测定枸杞中的硒.山西大学学报(自然科学版),2002,25(3):238~240
    [35] 郝素娥,滕冰.硒酵母中的有机硒及硒代氨基酸含量的测定方法.分析测试学报,1999,18(3):72~74
    [36] 方兴汉,昊彩,沈垦荣.从我国茶叶含硒量状况谈我国高硒茶的开发应用.中国茶叶,1990(6):6~8
    [37] 胡秋辉,潘根兴,丁瑞兴,安辛欣,吕心泉.富硒茶硒的浸出率及其化学性质的研
    
    究.中国农业科学,1999,32(5):69~72
    [38] Westermark T. Selenium and selenides. Acta Pharmacal Toxical, 1987, 4(1): 121
    [39] 江澜.生物富硒功能食品的开发.渝州大学学报(自然科学版),2000(2):43~45
    [40] 郝素娥,滕冰,韩喜江.硒酵母培养过程中亚硒酸钠添加量对硒酵母中硒含量分布的影响.精细化工,1997,4:27
    [41] Sanz Alaejos M. Chem. Rev, 1995, 95, 227
    [42] 叶毓琼,孟韵.理化检验-化学分册,1995,31(4):242
    [43] 农晋琦,蔡端仁,欧阳政.硒半胱氨酸和硒胱氨酸的间接气相色谱测定——溴化氰—气相色谱法.色谱,1994,12(1):28~31
    [44] 吴江,欧阳政.微量硒代蛋氨酸的溴化氰—气相色谱法的分析.色谱,1987,5(4):236
    [45] Huber R E, et al. Arch Biochem Biophys, 1967, 122:164
    [46] Walter R, et al. Anal Biochem, 1969, 27:164
    [47] Beilstein M A, et al. J Inorg Biochem, 1981: 15:339
    [48] 谢丽琪,欧阳政.色谱,1990,27:231
    [49] 汪建军,潘芳,施建兵.分光光度法不确定度的评定.现代测量与实验室管理,2000,2:29~31
    [50] 王虎,游俊富,赵海山.ICP-AES测定水中铜结果的不确定度评定.光谱实验室,2002,19(2):219~223
    [51] 臧慕文.ICP-AES法测定钯碳催化剂中钯的不确定度的评定.分析试验室,2003,22(6):13~17
    [52] Example A4: Uncertainty Estimation from In-House Validation Studies—Determination of Organophosphorus Pesticides in Bread. Quantifying Uncertainty. 2000, 4:59~69
    [53] Example A5: Determination of Cadmium Release from Ceramic Ware by Atomic Absorption Spectrometry. Quantifying Uncertainty. 2000, 4:70~78
    [54] Laviron. E, J. Electroanal. Chem[J], 1979, 101:19
    [55] Bard A.J.著,谷林瑛,吕鸣祥,宋诗哲等译.电化学方法原理及应用.北京:化学工业出版社,1986:593~614
    [56] A.J.Bard, L.R.Faulkner. Theory and Application of Electrochemical Methods[M]. Beijing: Chemical Industry Press, 1984:258
    
    
    [57] EANSON. Trangslated by Huang Wei-zeng(黄慰曾) et al. Emendated by Gao Xiao-xia(高小霞)and Yang Wen-zhi(杨文治). Electrochemistry and electroanalysisehemistry(电化学和电分析化学)[M]. Beijing: Peking University Press, 1983:136
    [58] 刘永辉编著.电化学测试技术.北京:北京航空学院出版社,1987:134~135
    [59] Tian Zhao-Wu(田昭武). Research Techniques of Electrichemistry(电化学研究方法)[M], Beijing: Scince Press, 1984:239-240
    [60] Ouyang Zheng. A Method for the Indirect Determination of Trace Bound Selenome-thioninein Plants and Some Biological Material. Analytical Biochemistry, 1989, 178: 77~81
    [61] 王光亚,周瑞华,孙淑庄等.生物样品、水及土壤中痕量硒的荧光测定法:一、发、血、尿和其它组织中痕量硒的测定.营养学报,1985,7(1):39~45
    [62] 张丽平,肖伟祥.茶叶蛋白质的氨基酸组成.
    [63] 杜琪珍,沈星荣,方兴汉.茶叶中的硒成分分析[J].茶叶科学,1991,11(2):133~137
    [64] 钟颜麟,刘勤晋.茶硒赋存形态的研究.茶叶科学,1992,12(2):94
    [65] 胡秋辉,潘根兴,丁瑞兴,安辛欣,吕心泉.富硒茶硒的浸出率及其化学性质的研究.中国农业科学,1999,32(5):69~72
    [66] 周维经,林树枝.枸杞资源综合利用开发研究.青海科技,1994,1(3):8~14
    [67] 何进,张声华.枸杞及枸杞多糖研究(Ⅰ).1995,16(2):14~21
    [68] ISO 1993E.测量标准不确定度表示导则[M].1993
    [69] 谢丽琪,欧阳政.色谱,1990,8(4):250~251
    [70] 陈汉杰,欧阳政,蔡端仁.色谱,1992,10(2):75~78
    [71] 吴江,欧阳政.色谱,1988,6(4):198~199
    [72] Ouyang Zheng, Wu Jiang. Biomedical Chromatography, 1988, 2(6): 258~259
    [73] 瞿进文,吴应亮,蔡端仁等.天然产物研究与开发,1994,6(2):96~98
    [74] 吴应亮,蔡宗源,何康明等.暨南大学学报(自然科学版),1994,15(3):70~73
    [75] 硒代氨基酸的电化学性质及其分析应用研究,陈建平,暨南大学2001届硕士研究生毕业论文

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700