用户名: 密码: 验证码:
香菇β-D-葡聚糖的构象转变及其对抗肿瘤活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
香菇是我国产量丰富的特产资源,也是传统疗养型食用菌,并且具有抗肿瘤和增强免疫等多种功能。近年来已发现多糖的抗肿瘤活性与它在溶液中的链构象(刚性或柔顺、单一、双—及三螺旋和聚集体等形态)有关,而它们主要依靠高分子溶液理论和方法确定。本论文主要通过生物技术从香菇子实体中提取和纯化得到香菇β-葡聚糖,然后研究它的化学结构、溶液中链构象及其构象转变和抗肿瘤活性,并探讨多糖的结构与生物活性之间的构效关系。因此本研究工作属交叉学科领域。
     本工作的主要创新点如下:(1)首次利用先进仪器和高分子溶液理论建立了香菇β-葡聚糖在0.9%NaCl水溶液中和在二甲亚砜(DMSO)溶液中的Mark-Houwink方程;(2)证明香菇β-葡聚糖L-FV-IB在水/DMSO混合溶液中会发生螺旋~无规线团的构象转变,转变范围为DMSO的体积分数为0.82~0.85,而且是不可逆行为;(3)评价了香菇β-葡聚糖的抗肿瘤活性,揭示分子量为5.72×10~5且具有三螺旋链构象的多糖级分显示较高的抗肿瘤活性,且对正常细胞无毒副作用。由实验结果推断,三螺旋链构象有利于多糖抗肿瘤活性的提高。
     本论文主要研究内容和结论概括如下。从香菇子实体中提取水溶性香菇多糖L-FV-IB,采用红外光谱(IR)和核磁共振(NMR)检测了它的化学结构。用超声波降解和重沉淀分级法结合得到L-FV-IB试样的不同分子量的级份。用激光光散射(LLS)、尺寸排除色谱与光散射联用装置(SEC-LLS)和粘度法测定了它们的重均分子量(M_w),均方旋转半径(<S~2>~(1/2))和特性粘数([η])。结构分析指出,试样L-FV-IB为带有少量(1→6)键接的D-葡聚糖支链的β-(1→3)-D-葡聚糖,并且平均每五个主链糖环上有两个1→6键接的葡萄糖侧基。由一系列L-FV-IB级分的M_w和[η]实验数据得出它在0.9%NaCl水溶液中25℃条件下的Mark-Houwink方程和<S~2>~(1/2)与M_w的关系为:[η]=2.94×10~(-7)M_w~(1.58)(cm~3 g~(-1))(M_w<6.0×10~5)和[η]=2.30×10~(-5)M_w~(1.25)(cm~3g~(-1))(M_w>6.0×10~5);<S~2>_z~(1/2)=(4.35±0.3)×10~(-3)M_w~(0.72±0.02)(nm);而它在DMSO中25℃的Mark-Houwink方程为:[η]=0.112 M_w~(0.54)(cm~3 g~(-1));同时,按YFY高分子溶液理论模型计算出其在水溶液中的构象参数,如单位轮廓长摩尔质量(M_L)、持续长度(q)以及螺旋距(h)依次为2240±100nm~(-1),100±10nm,0.30±0.1nm。它在水溶液中的分子参数符合三螺旋链,而在DMSO中的分子参数符合单股柔顺链构象。由此证明L-FV-IB葡聚糖在0.9%NaCl水溶液中为三螺旋链构象,而它在DMSO中呈现无规线团构象。
     用SEC-LLS、LLS、粘度法、旋光法和~(13)C NMR表征了香菇多糖L-FV-IB在0.2MNaCl水溶液、DMSO和不同W_(DMSO)的水/DMSO的混合溶液中的链构象。结果表明,
    
    L一FV-IB在0.2M NaCI水溶液中为三股螺旋链构象,而在DMSO中则解聚为单股柔顺
    链。[,]、Mw、扩>z,口、[a]n20和”eN侧叹数据证明L一Fv-IB在水/nMso混合溶液中
    发生了构象转变,由三股螺旋链解开成为单股柔顺链。这种三螺旋一单股无规线团链
    的构象转变点是wDMso=0.80一0.85。并且该三螺旋链葡聚糖构象转变不可逆。’3C
    NM[R谱的明显变化证明L一FV-IB发生了三螺旋链一无规线团链的构象转变,例如三螺旋
    链构象时,尽(l,3)昔键连接的主链的C3峰信号的消失、侧基取代的C6:峰相对强度
    的增强;构象发生变化的过程中,C6峰呈现不对称的宽峰。香菇多糖为三螺旋链构象
    时,其声(l*3)昔键连接的主链被分子内和分子间氢键束缚(创门分别维持链的螺旋状
    和三股链),因而引起主链上C6和C3信号减弱或消失,而侧基上的C3’及取代的
    C6:则变得相对自由,而使信号明显增强。并且提出一个圆筒状模型,即三螺旋链主链
    为芯而侧基为相对自由的圆筒套,来描述香菇多糖的三螺旋链构象及其转变。
     用植入BALB/c小鼠体内的s一180实体瘤进行香菇尽葡聚糖的体内生物活性试验。
    采用s一180细胞株、宫颈癌Hela细胞株和三种不同分化程度的胃腺癌细胞株,低分化
    的MKN一45、中分化的SGC79OI、高分化的MKN一28进行体外活性试验。同时,对小
    鼠的肿瘤及脏器进行了病理组织学研究,从而评价香菇中不同分子量和不同链构象对
    多糖的抗肿瘤活性的影响。香菇多糖L一FV-IB在体外对恶性程度高的低分化胃腺癌细
    胞株MxN一45和中分化SGC7901有较好的抑制作用,而且分子量为5.71 xl护多糖级
    分L一FV-IB52具有最高的体外抗胃癌活性。L一FV-IB在体外对贴壁细胞宫颈癌细胞Hela
    的生长和增殖无明显的抑制作用,而对5180肿瘤细胞的生长和增殖却有较好的抑制作
    用,表明多糖抗肿瘤活性对癌细胞有选择性。香菇多糖L一FV-IB的分子量范围从3.57x
    1护到28.4 xl护的级分对s一180肿瘤细胞生长具有一定的抑制作用,而分子量为14.9、
    l0s和5.71/105的级分具有最高的体内、体外抗肿瘤活性(省=50.5%)。香菇乒
    (1*3)一D一葡聚糖的三螺旋链构象对其抗肿瘤活性起重要作用。当三螺旋链被破坏后,
    其抗5180肿瘤活性明显下降(省=123%)甚至消失。香菇尽葡聚糖抗肿瘤活性机理主
    要还是通过调节宿主机体的免疫反应在体内抑制肿瘤细胞的生长,而不是在体外特异
    性的产生细胞毒?
Lentinus edodes as the special local product is an abundant natural food resource in China. It has long been used in traditional herb except for its nutritional values. It is well established that the polysaccharide fractions of lentinan has many functions such as antitumor and immunological enhancement. It has been found in recent years that the antitumor activities of polysaccharides are correlated to their chain conformations in solution (stiff or coil, single-, double- or triple helix, aggregate), which are mainly characterized by polymer solution theory and modern method in polymer science. In this work, lentinan, a kind of water-soluble polysaccharide, was extracted from Lentinus edodes by biotechnics. The chemical structure, chain conformation in solution, and antitumor activity of polysaccharide were studied, and the correlation between structure and bioactivities were discussed. Therefore the research is in a cross field of polymer physics and biochemistry.
    The creative points of this work are as follows. (1) The dependences of intrinsic viscosity [] and radius of gyration 1/2 on Mw for Lentinan in 0.9% NaCl aqueous solution and in DMSO were established based on the theory of polymer solution and advanced instruments. (2) It is confirmed that the helix-coil transition for the B-D-glucan in the mixture of water / DMSO occurred from 0.82 to 0.85 of the volume fraction of the DMSO. (3) The anti-tumor activity of Lentinan with different molecular weights was evaluated, showing that the triple helix Lentinan with Mw of 5.71 x105 exhibited higher antitumor activity in vivo and vitro without any damage to the normal cell.
    The main contents and conclusions in this thesis are divided into the following parts.
    B-(1-3)-D-glucan was isolated from Lentinus edodes by extracting with 0.8% NaOH / 0.02% NaBH4 and 5% NaOH / 0.05% NaBH4 respectively to obtain glucans L-FV-IA and L-FV-IB. The chemical structure of the sample L-FV-IB was determined by infrared (IR) and 13C NMR to be a B-(1-3)-D-glucan with (1-6) branching , namely two branched residues for every five D-gluopyranosyl residues. The glucan L-FV-IB was degraded into seven fractions of different molecular weights by ultrasonic irradiation, and further fractionated, each into three parts, by precipitation from water to acetone at the room temperature. Weight-average molecular weight (Mw), radius of gyration (1/2), and intrinsic viscosity ([]) of the B-D-glucan and its fractions in 0.9% NaCl aqueous solution and dimethylsulfoxide (DMSO) were measured by multi-angle laser light scattering (LLS), size exclusion
    
    
    
    chromatography combined with multi-angel laser light scattering (SEC-LLS), and viscometry. Mw dependence of [] and radius of gyration 1/2 for the glucan in 0.9% NaCl aqueous solution at 25 C were established to be [17] = 2.94 x 10-7Mw1.58 (cm3 g-1) (Mw < 6.0 x 105), [] = 2.30x10-5Mw125(cm3 g-1) (Mw>6.0x 105) and 1/2= (4.35+0.3) x 10-3Mw0.75+0.02(nm), respectively. However, the dependences of intrinsic viscosity [] on Mw for the glucan in DMSO was established to be [] = 0.112 Mwa54 (cm3 g-1). Based on YFY theory for wormlike chain model, the conformational parameters of the glucan L-FV-IB were obtained to be 2240 + 100 nm-1, 100 + 10 nm and 0.30 + 0.1nm for molar mass per unit contour length (ML), persistence length (q), and contour length per main-chain glucose residue (h), respectively, which agree closely with theory data of triple-helical chains and reported parameters for triple-helix schizophyllan in 0.01M NaOH aqueous solution. However, the parameters of the B-D-glucan agree with theory data of single-flexible chains. The results indicated that the glucan in 0.9% NaCl aqueous solution exist as triple-helical chains with high rigidity, and in DMSO as single-flexible chains.
    The values of Mw, 1/2, [] and the special optical rotations at 589nm [a]D of lentinan in 0.2M NaCl aqueous solution, dimethylsulfoxide (DMSO) and water / DMSO mixtures were measured by LLS, SEC-LLS, viscometry, and polarimeter. The results indicated that the
引文
[1] Liu, X. C. and Dordick, J. S. Sugar-containing polyamines prepared using galaetose oxidase coupled with chemical reduction. J. Am. Chem. Soc., 1999, 121, 466.
    [2] Franz, G. Polysaccharides in pharmacy: current applications and future concepts. Plant Medica, 1989, 55, 493.
    [3] Wasser, S. P. and Wels, A. L. Therapeutic effects of Substances Occurring in Higher Basidiomy.cetes Mushroom: A Modern PerspectiveCritical Reviews in Immunology, 1999, 19, 65.
    [4] Ooi, V.E.C. and Liu, F. A Review of pharmacological activities of Mushroom Polysaccharides. Int. J. Med. Mushr., 1999, 1, 195.
    [5] Hawksworth, DL. Mushrooms: the extent of the unexplored potential. Int. J. Med. Mushr, 2001, 3, 333.
    [6] Reshetnikov, S.V.; Wasser, S.P. and Tan, K.K. Higher Basidiomycota as a source of antitumor and immunostimulating polysaceharides, Int. J. Med. Mushr, 2001, 3, 361.
    [7] Mizuno, T. Medicinal Properties and Clinical effects on Agaricus blazei Murr. Int. J. Med. Mushr, 2002, 4, 9.
    [8] Miles, P. G. and Chang, S. T. Mushroom Biology: Concise Basics and Current Developments. World Scientific Press, 1997.
    [9] 肖建辉,蒋侬辉,梁宗琦,刘爱英,食药用真菌多糖研究进展.生命的化学,2002,22,148.
    [10] Mizuno, T. The extraction and development of antitumor active polysaccharides from medicinal mushrooms in Japan. Int. J. Med. Mushr., 1999, 1, 9.
    [11] Wasser, S.P. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Mocrobiology and Biotechnology, 2002, 10, 13.
    [12] Staub, A. M. Removeal ofprotein-Sevag method, Methods in carbohydr, chem., 1965, 5, 5.
    [13] Rable, F. M. Separation of carbohydrates on a new polar bonded phase material. J. Chromatog., 1976, 126,731.
    [14] Corsaro, M. M. and Castro, C. D. A. Evidente, R. Lanzetta, A. Malinaro, et al., Phytotoxic extraeellular polysaccharide fractions from Cryphonectria parasitica (Murr.) Barr strains. Carbohydr. Polym., 1998, 37,167.
    [15] Yoon, S.-J.; Yu, M.-A.; Pyun, Y.-R. et al. The nontoxic mushroom Auricularia auricula contains a polysaccharide with anticoagulant activity mediated by antithrombin, Thrombosis Research, 2003, 112, 151-158.
    [16] Leschziner, C. and Cerezo, A. S. Correlation of chemical composition and optical raotation of
    
    water-soluble galactomarmans. Carbohydr.Res., 1970, 15, 291.
    [17] Reid, S.; Sims, I. M. and Melton, L. D. A. M. Gane, Characterisation of of extracellular polysaecharides from suspension cultures of apple (Malus domestica). Carbohydr. Polym., 1999, 39, 369.
    [18] Saima, Y.; Das, A. K.; Sarkar, K. K.; Sen, A. Sr, K. and P. Sur, Antittunor pectic polysaccharide from Feronia limonia. Intern. J. Biol. Macromol., 2000, 27, 333.
    [19] Zhuang, C. and Mizuno, T. A. Shimada, H. Ito, et al., Antitumor protein-containing polysaccharides from a Chinese mushroon Fengweigu or Houbitake, Pleurotus sajor-caju (Fr.) Sings. Biosci. Biotech, Biochem., 1993, 57,901.
    [20] Kennedy, J. F.; Barker, S. A. and White, C. A. The selection adsorption of polysaccharides on polyaromatic surfaces. Carbohydr. Res., 1974, 38, 13.
    [21] 吴梧桐,余品华,夏尔宁,银耳孢子多糖TFA、TFB、TFC的分离纯化及组成单糖的鉴定.生物化学与生物物理学报,1984,16,393.
    [22] 方积年,竹黄多糖的研究,Ⅰ.分离纯化及其性质.生物化学与生物物理学报,1980,12,365.
    [23] Dietrich, C. P. Identification of acidic mucopolysaccharides by agrose gel electophoresis. J. Chromatogr., 1977, 130, 299.
    [24] 方积年,多糖的分离纯化及其纯度鉴别与分子量测定.药学通报,1984,19,46.
    [25] Albershein, P.; Nevins, D. J.; English, P. D. and Karr, A. A method for the determination for the analysis of sugars in plant cell-wall polysaccharides by gas-liquid chromatography. Carbohydr. Res., 1967, 5, 340.
    [26] Chaplin, M. F. and Kennedy, J. F. Hydrazinosis of N-glycosidic linkages, Carbohydrate Analysis, 1986, P 151, IRL Press, Oxiford, Washington DC.
    [27] Blumenkrantz, N. and Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal, Biochem., 1973, 54, 484.
    [28] 刘翠平,董群,方积年,一种判定多糖中有无糖醛酸残基的简易方法.中草药;2001,32,404
    [29] Ghebregzabher, M.; Rufini, S.; Monaldi, B. and Lato, M. Thin-layer chromatography of carbohydrates. J. Chromatogr, 1976, 127, 133.
    [30] 杜予民,王小燕,柳卫莉,蒙缔亚,高效液相色谱法分析生漆多糖中的单糖组成.色谱,1998,16,173.
    [31] McGinnis, G. D. Preparation of aldonoitrile acetates using N-methylimidazole as catalyst and solvent. Carbohydr. Res., 1982, 108, 284.
    [32] Englyst, H. N.; Quigley, M. E.; Hudson, G. J. Determination of dietary fibre as non-starch
    
    polysaccharides with gas-liquid chromatographic, high-performation liquid chromatographic or spectrophotometric measurement of constituent sugars. Analyst, 1994, 119, 1497.
    [33] Hakomori, S. Rapid permethylation of glycolipids and polysaccharides catalyzed by methylsulfinyl carbonion in dimethyl sulfoxide. J. Biochem., 1964, 55, 205.
    [34] Ciuanu, I. and Kerek, F. Canalysis of the linkage positions in D-fructofuranosyl residues by the reductive-cleavage method. Carbohydr. Res., 1984, 131, 209.
    [35] Harris, P. J.; Henry, R. J. and Stone, R. A. A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res., 1984, 127, 59.
    [36] Mukerjea, R.; Kim, D.; Robyt, J. F. Simplified and improved methylation of saccharides, using a modified procedure and thin-layer chromatography. Carbohydr. Res., 1996, 292, 11.
    [37] Yamazaki, K.; Inukai, K.; Suzaki, M.; Kuga, H. and Korenag, H. Structure studies on a sulfated polysaccharide from an Arthrobacter sp. By NMR spectroscopy and methylation analysis. Carbohydr Res., 1997, 305, 253.
    [38] Alban, S. and Franz, G. Gas-liquid chromatography-mass spectrometry analysis of anticoagulant active curdlan sulfates. Seminars in Thrombosis and Hemostasis, 1994, 20, 152.
    [39] Dutton, G. G. S.; Karunaratne, D. N. Carbohydr. Res., 1983, 119, 157.
    [40] Gray, G. R. the reductive cleavage method for polysaecharide. Carbohydr. Polym., 1998, 34, 429.
    [41] Bruneteau, M.; Fabre, I. ; Perret, J. ; Michel, G. ; Ricci, P. Antitumor active β-D-glucans from phytophthora parasitica. Carbohydr Res., 1988, 175, 137.
    [42] 田庚元,王晨,枸杞子糖蛋白一条高分子量糖链的结构测定.生物化学与生物物理学报,1995,27,493.
    [43] Vaishnav, V. V.; Bacon, B. E. ; O'Neill, M.; Cherniak, R. Structural characterization of the galactoxylomannan of Cryptococcus neoformans Cap 67. Carbohydr. Res., 1997, 306, 315.
    [44] 张剑波,田庚元,寡糖分离和结构分析进展.生物化学与生物物理进展,1998,25,114.
    [45] Wilson, R. H.; Goodfellow, B. J.; Belton, P.S. Fourier transform infrared spectroscopy for the study of food biopolymers. Food Hydrocolloids, 1988, 2, 169.
    [46] Mathlouthi, M.; Koenig, J. L. Vibrational spectra of carbohydrates. Adv. Carbohydr. Chem. Biochem., 1986, 44, 7-89.
    [47] Gerwig, G. J.; Kamerling, J. P.; Vliegenthart, J. F. G. Determination of the D and L configuration of neutral monosaccharides by high-resolution capillary G. L. C. Carbohydr. Res., 1978, 62, 349.
    [48] Usui, T.; Yokoyama, M.; Yamoka, N. ; Matsuda, K. ; Tuzimura, K. Proton magnetic resonance spectra of D-gluco-oligosaccharides and D-glucans. Carbohydr. Res., 1974, 33, 105.
    
    
    [49] Ensley, H. E.; Tobias, B.; Pretus, H. A.; McNamee, R. B.; Jones, E. L.; Browder, I. W.; Williams, D. L. NMR spectral analysis of water-insoluble (1→3)-β-D-glucans isolated from Saccharomyces cerevisiae. Carbohydr. Res., 1994, 258, 307.
    [50] Kogan, G. ; Alfldi, J. ; Masler, L. ~(13)C-NMR spectroscopic investigation of two yeast cell wall β-D-glucans. Biopolymers, 1988, 27, 1055.
    [51] Burrows, L. L.; Pidgeon, K. E.; Lam, J.S. Pseudomonas aeruginosa B-band lipopolysaccharide genes wbpA and wbpL and their Eschedchia coil homologues wec C and wecB are not functionally interchangeable. FEBS Microbiol. Lett., 2000, 189, 135.
    [52] Kondakova, A. N.; Perepelov, A. V.; Bartodziejska, B.; Shanshkov, A. S. et al. Structure of the acidic O-specific polysacchafide from Proteus vulgaris 039 containing 517-diacetamido- 3,5,7,9-tetradeoxy-1-glycero-1-anno-non-2-ulosonic acid. Carbohydr. Res., 2001,333, 241.
    [53] Coxon, B. Two-dimensional POMMIE carbon-proton chemical shift correlated ~(13)C-NMR spectrum editing. Can. J. Chem., 1990, 68, 1145.
    [54] Summers, M. F.; Marzill, L. G.; Bax, A. Complete ~1H and ~(13)C assignment of coenzyme B_(12) through the use of new two-dimensional NMR experiments. J. Am. Chem. Soc., 1986, 108, 4285.
    [55] Bax, A.; Summers, M. F. ~1H and ~(13)C assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J. Am. Chem. Soc., 1986, 108, 2093.
    [56] 鞠建华,周亮,杨峻山,二维核磁共振波谱在阐明一种三萜多糖皂苷结构中的应用.波谱学杂志,2001,18,329.
    [57] 王展,方积年,高场核磁共振波谱在多糖结构研究中的应用.分析化学,2000,28,240.
    [58] Bellincampi, D.; Camardella, L.; Delcour, J.A. et. al. Potential physiological role of plant glycosidase inhibitors Biochimica et Biophysica Acta 2004, 1696, 265-274.
    [59] 梁忠岩,倪秀珍,中草药多糖的应用研究.长春师范学院学报,2001,20,38.
    [60] Beroviǒ, M.; Habijaniǒ, J.; Zore, I.; Hodar, D.; Boh, B. and Pohleven, F. Submerged cultivation of Ganoderma lucidum biomass and immunostimulatory effects of fungal polysaccharides J. of Biotech. 2003, 103, 77-86.
    [61] Wasser, S.P. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides, Appl. Microbiol. Biotechnol. 2002, 60, 258-274.
    [62] Choi, E.M.; Koo, S.J. and Hwang, J.K. Immune cell stimulating activity of mucopolysaccharide isolate from yam (Dioscorea batatas), J. of Ethnopharmaeology, 2004, 91, 1-6.
    [63] Wang, H. T.; Ng, B. V.; Ooi, E. C. A polysaccharide-peptide complex from cultured mycelia of the
    
    mushroon Tricholoma mongolicum with immunocnhancing antitumor activities. Biochem. Cell Biol., 1996, 74, 95.
    [64] 吕晓英,曾令福,杨培权,红毛五加多糖诱导胃癌细胞凋亡研究.中国新药杂志,2000,9,166.
    [65] Peng, Y.; Zhang, L.; Zeng, E and Xu, Y. Structure and antitumor activity of extracellular polysaccharides from mycelium. Carbohydr. Polym. 2003, 54, 297-303.
    [66] Liu, M.; Li, J.; Kong, F.; Lin, J.and Gao, Y. Induction of immunomodulating cytokines by a new polysaccharide-peptide complex from culture mycelia of Lentinus edodes. Immunopharmacology, 1998, 40, 187.
    [67] Vikstrǒm, E. V. Components with potential immunosuppressive activity in lipopolysaccharide of laboratory Pseudomonas aeruginosa strains. Immunol. Lett. 2003, 85, 29-33.
    [68] Mitsuya, H.; Looney, D. J.; Kuno, S.; Ueno, R. ; Wong-Staal, F.; Broder, S. Dextran sulfate suppression of viruses in the HIV family: inhibition ofvirion binding to CD4~+ cells. Science, 1988, 240, 646.
    [69] Mazumder, S.; Ghosal, P. K.; Pujol, C. A. et al. Isolation, chemical investigation and antiviral activity of polysaccharides from Gracilaria corticata, International J. of Biological Macromolecules 2002, 31, 87-95.
    [70] Shen, B.; Shimmon, S.; Smith, M.M. and Ghosh, P. Biosensor analysis of the molecular interactions of pentosan polysulfate and of sulfated glycosaminoglycans with immobilized elastase, hyaluronidase and lysozyme using suface plasmon resonance (SPR) technology, J. of Pharmaceutical and Biomedical Analysis 2003, 31, 83-93.
    [71] DeClercq, E. Antiviral agents: Characteristic activitiy spectrum depending on the molecular target with which they interact. Adv. Virus Res., 1993, 42, 1.
    [72] Montefiori, D. C.; Robison, W. E.; Modliszewski, A. Diffenrential inhibition of HIV-1 cell binding and HIV-1-induced syncytium formation by low molecular weight sulfated polysaccharides. J.Antimicrob Chemother, 1990, 25, 313.
    [73] Baba, M.; Nakajima, M.; Schols, D.; Pauwels, R.; Balzarini, J.; Clercq, E. D. Pentosan polusulfate, a sulfated oligosaccharide, is a potent and selective anti0HIV agent in vitro. Antiviral Res, 1988, 9, 335.
    [74] Cronn, R. C.; Whitmer, J. D.; North, T. W. RNaseH activity associated with reverse transcriptase from feline immunodeficiency virus. J Virol, 1992, 66, 1215.
    [75] Moelling, K.; Schulze, T. and Diringer, H. Inhibition of human immunodeficiency virus type 1
    
    RNaseH by sulfated polyanions. J Virol, 1989, 63, 5489.
    [76] Misuya, H.; Looney, D. J.; Kuno, S.; Ueno, R.; Wong-Staal, F. and Broder, S. Dextran sulfate suppression of viruses in the HIV family: inhibition of virus binding to CD4~+ cells. Science, 1988, 240, 646.
    [77] Neyts, J.; Clercq, E. D. Sulfated polymers inhibit the interaction of human cytomegalovirus with cell surface heparan sulfate, J. Aids Hum Retrovir, 1995, 11, 233-246.
    [78] Robbins, A. K.; Watson, R. J.;. Whealy, M. E; Hays, W. Characterization of a pseudorabies virus glycoprotein gene with homology to herpes simplex virus type 1 and type 2 glycoprotein. C. J. Virol, 1986, 58, 339.
    [79] Witvrouw, M.; Schols, D.; Andrei, G.; Snoeck, R.; Ikeda, S. New polyacetal polysulfate active against human immunodeficiency virus and other enveloped viruses. Antiviral Chem. Chemother, 1992, 3, 351.
    [80] Witvrouw, M.; Desmyter, J.; Clercq, E.D. Polysulfates as inhibitors of HIV and ither enveloped viruses. Antiviral Chem. Chemother, 1994, 5, 345.
    [81] Yang, J.; Du, Y.; Huang, R.; Wan, Y. and Li, T. Chemical modification, characterization and structure-anticoagulant activity relationships of Chinese lacquer polysaccharides, International J. of Biological Macromolecules 2002, 31, 55-62.
    [82] Deng, D. F; Xie, X. F.; Wang, Y. L. Studying progress in tea polysaccharide and its pharmacology. Nat. Prod. Res. Dev., 1996, 8, 63.
    [83] Deng, D. F; Wang, C. H.; Li, J.; Zhao, G W. Components and activities of polysaccharides from coarse tea. J Agric. Food Chem., 2001, 49, 507.
    [84] Wei, W. S Acta Pharmacol. Sinica, 1996, 17, 174.
    [85] Lee, B. C.; Bae, J. T.; Pyo, H. B. et al. Biological activities of the polysaccharides produced from submerged culture of the edible Basidiomycete Grifola frondosa, Enzyme and Microbial Technology, 2003, 32, 574-581.
    [86] K, Sakurai.; Shinkai, S. Molecular recognition of adenine, cytosine, and uracil in a single-stranded RNA by a natural polysaccharide: schizophyllan, J. Am. Chem. Soc., 2000, 122, 452.
    [87] Picout, D. R. and Ross-Murphy, S. B. On the chain flexibity of arabinoxylans and other β-(1→4) polysaccharides Carbohydr. Res. 2002, 337, 1781-1784.
    [88] Bendjeddou, D.; Lalaoui, K. and Satta, D. Immunostimulating activity of the hot water-soluble polysaccharide extracts of Anacyclus pyrethrum, Alpinia galanga and Citrullus colocynthis, J. of Ethnopharmacology, 2003, 88, 155-160.
    
    
    [89] Silva, B.P. and Parente, J. P. Bioactive polysaecharides from Costus spicatus. Carbohydr. Polym. 2003, 51, 239-242.
    [90] Urano, M.; Tanaka, C.; Sugiyama, Y.; Miya, Kiichi and Saji, S. Antitumor effects of residual tumor after cryoablation: the combined effect of residual tumor and a protein-bound polysaccharide on multiple liver metastases in a murine model. Cryobiology 2003, 46, 238-245.
    [91] Hamura, J. and Chihara, G. Nature, 1973, 245, 40.
    [92] Yanaki, T.; Ito, W.; Tabata, K.; Kojima, T.; Norizuye, T.; Takano, N. and Fujita, H. Correlation between the antitumor activity of a polysacchadde schizophyllan and its triple-helical conformation in dilute aqueous solution. Biohys. Chem., 1983, 17, 337.
    [93] Faith, B. H.; Espevik, T.; Ryan, L. and Stokke, B. T. The cytokine stimulating activity of (1-3)-β-D-glucans is dependent on the triple helix conformation, Carbohydr Res., 2000, 329, 587-596.
    [94] Yang, J.; Du, Y.; Huang, R.; Wan, Y. and Li, T. Chemical modification, characterization and structure-anticoagulant activity relationships of Chinese lacquer polysaccharides, International J. of Biological Macromolecules 2002, 31, 55-62.
    [95] Amornrut, C.; Toida, T. ; Imanari, T. ; Woo, E.; Park, H. A new sulfated β-galactan from clans with anti-HIV activity. Carbohydr. Res., 1999, 321, 121.
    [96] Vogl, H. Paper, D. H. and Franz, G. Preparation of a sulfated linear (1->4)-β-D-galaetan with variable degrees of sulfation Carbohydr. Polym., 2000, 41, 185.
    [97] Kanayama, H.; Adachi, N.; Togami, M. A new antiturnor polysaccharide from the mycelia ofPoria cocos Wolf. Chem. Pharm. Bull., 1983, 31, 1115.
    [98] Mueller, A.; Raptis, J.; Rice, P.; Ensley, H.; Williams, D. L. The influence of glucan polymer structure and solution conformation on binding to (1→3)-β-D-glucan receptors in a human monocyte-like cell line. Glycobiology, 2000, 10, 339.
    [99] Adachi, Y.; Ohno, N.; Ohsawa, M.; Oikawa, S. and Yadomae, T. Change of biological activities of(1-3)-beta-D-glucan from Grifola frondosa upon molecular weight reduction by heat treatment.Chem. Pharm. Bull.. 1990. 38. 477.
    [100] 张俐娜,陈敬华,丁琼,杨光,高分子链形态学。武汉大学,1999,5.
    [101] Yamakawa, H. Modern theory of polymer solutions Part Ⅰ. Kyoto University.1971.
    [102] Kratky, O. and Porod, G. Rec. Trav. Chim., 1949, 68, 1106.
    [103] Sanchez, I. C. and Frankenberg, C. Von The correlated chain. A statistical model for macromolecules. Macromolecules, 1969, 2, 666.
    
    
    [104] Mansfield, M. L. Broken wormlike chain model of semiflexible polymers. Macromolecules, 1986, 19, 854.
    [105] Landau, L. D. and Lifshitz, E. M. Statistical Physics, Addison-Wesley, Reading, MA, 1985.
    [106] Benoit, H.; Doty, P. Light scattering from non-gaussian chains. J. Phys. Chem. 1953, 57, 958-963.
    [107] Yamakawa, H. M. Fujii, Statistical mechanics of helical wormlike chains 1. Differential equations and moments. J. Chem. Phys., 1976, 64, 5222.
    [108] Yamakawa, H. A hypothesis on polymer chain configurations. Helical wormlike chain. Macromolecules, 1977, 10, 692.
    [109] Yamakawa, H. Molecular Conformation and Dynamics of Macromolecules in Condensed Systems, 1988, M. Nagasawa Ed., Elsevier, Amsterdam, 21.
    [110] Yamakawa, H. Frontiers of Macromolecular Science, 1989, T. Saegusa, T. Higashimura, A. Abe Eds, Blackwell, 271.
    [111] Norisuye, T. Semi flexible polymers in dilute solution. Prog. Polym. Sci., 1993, 18, 543.
    [112] Yamakawa, H.; Fujii, M. Intrinsic viscosity of wormlike chains. Determination of the shift factor. Macromolecules, 1974, 7, 128.
    [113] Yamakawa, H. Modern Theory of Polymer Solutions, 1971, Harper&Row, New York,
    [114] Norisuye, T. and Fujita, H. Excluded-volume effects in dilute polymers solutions Ⅻ Effects of chain stiffness. Ploym. J., 1982, 14, 143.
    [115] Yamakawa, H. and Fujii, M. Translational friction cofficient of warmlike chains. Macromolecules, 1973, 6, 407.
    [116] Kirkwood, J. G. and Riseman, J. The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. Chem. Phys., 1948, 16, 565.
    [117] Auer, P. L. and Gardner, C. S. J. Chem. Phys., 1955, 23, 1545.
    [118] Yoshizaki, T. and Yamakawa, H. Dynamics of spheroid - cylindrical molecules in dilute solution, J. Chem. Phys., 1980, 72, 57.
    [119] Yamakawa, H. A hypothesis on polymer chain configurations. Helical wormlike chains Macromolecules 1977, 10, 692-696.
    [120] Yamakawa, H. On the theory of the second virial coefficient for polymer chains. Macromolecules 1992, 25, 1912-1916.
    [121] Yamakawa, H. and Yoshizaki, T. Transport coefficients of helical wormlike chains.2.Translational friction coefficient. Macromolecules 1979, 12, 32-38.
    
    
    [122] Yamakawa, H. and Yoshizaki, T. Transport coefficients of helical wormlike chains.3.Intrinsic viscosity. Macromolecules 1980, 13, 633-643.
    [123] Bohdanecky, M. New method for estimating the parameters of the wormlike chain model from the intrinsic viscosity of stiff-chain polymers. Macromolecules, 1983, 16, 1483.
    [124] Flow, P. J. The configuration ofreai polymer chains. J. Chem. Phys., 1949, 17, 303.
    [125] Domb, C. and Barrett, A. J. Universality approach to the expansion factor of a polymer chain. Polymer, 1976, 17, 179.
    [126] Barrett, A. J. Intrinsic viscosity and friction coefficients for an excluded volume polymer in the Kirkwood approximations. Macromolecules, 1984, 17, 1566.
    [127] Murakami, H.; Norisuye, T. and Fujita, H. Dimensional and hydrodynamic properties of poly(hexyl isocyanate) in hexane. Macromolecules, 1980, 13, 345.
    [128] Motowoka, M.; Fujita, H. and Norisuye, T. Stiff chain behavior of poly (terephthaloyl-trans-2,5-dimethyl piperazine) in dilute solution. Polym. J., 1978, 10, 331.
    [129] Hirao, T.; Teramoto, A.; Sato, T.; Norisuye, T.; Masuda, T. and Higashimura, T. Stiff chain nature of poly (1-phenyl-1-propyne) in dilute solution. Polym. J., 1991, 23, 925.
    [130] Kitagawa, T.; Sadanobu, J. and Norisuye, T. Chain stiffness and excluded-volume effects in dilute polymer. Macromolecules, 1990, 23, 602.
    [131] Yamakawa, H. and Shimada, J. Stiffness and exclude-volum effects in polymer chains. J. Chem. Phys., 1985, 83, 2607.
    [132] Xu, X.; Zhang, L.; Norisuye, T. Molecular weight and aggragation of aeromonas gum treated with dimethyl sulfoxide in aqueous solution, J. Polym. Sci. Part B: Polym. Phys., 2002, 40, 2269.
    [133] Liu, F.; Ooi, V.E.C. and Chang, S.T. Induction in the mouse of gene expression of immunomodulating cytokines by mushroom polysaccharide-protein complexes. Life Sci, 1997, 60, 763.
    [134] Marini, M. A.; Berger, R. L.; Lam, D. P.; Martin, C.J. Prepared solution for the determination of the ionization constants of sets of ionizing groups in proteins. Anal. Biochem., 1971, 43, 188.
    [135] Heyer, A.G.; Schroeer, B.; Radosta, S. ; Wolff, D.; Czapla, S. ; Springer, J. Structure of the enzymatically synthesized fructan inulin. Carbohydr.Res., 1998, 313, 165.
    [136] Zhang, L.; Yang, L. Properties of Auricularia auricula-judae β-D-glucan in dilute solution. Biopolymers, 1995, 36, 695.
    [137] Zhang, L.; Yang, L.; Chen, J. Conformational change of the β-D-glucan of Auricularia
    
    auricula-judae in water-dimethyl sulfoxide mixtures. Carbohydr. Res., 1995, 276, 443.
    [138] Holzwarth, G. Conformation of the extracellular polysaccharide of Xanthomonas campestris Biochemistry, 1976, 15, 4333.
    [139] Chen, C. S. H.; Sheppard, E.W. Polym. Eng. Sci., 1980, 20, 512.
    [140] Holzwarth, G.; Prestridge, E. B. Multistranded helix in xanthan polysaccharide. Science, 1977, 19, 757.
    [141] Holzwarth, G. Molecular weight of xanthan polysaccharide. Carbohydr. Res., 1978, 66, 173.
    [142] Paradossi, G.; Brant, D. A. Light-scattering study of a series of xthan fractions in aqueous solution. Macromolecules, 1982, 15, 874.
    [143] Sato, T.; Norisuye, T. ; Fujita, H. Double-stranded helix of xanthan in dilute solution: evidence from light scattering. Polym. J., 1984, 16, 341.
    [144] Sato, T.; Norisuye, T.; Fujita, H. Melting behavior of schizophyllum commue polysaccharides in mixtures of water and dimethyl sulfoxide. Carbohydr.Res., 1981, 95, 195.
    [145] Sakurai, K.; Shinkai, S. Molecular recognition of adenine, cytosine, and uracil in a single-stranded RNA by a natural polysaccharide: schizophyllan. J. Am. Chem. Soc., 2000, 122, 452.
    [146] Yanaki, T.; Norisuye, T. Polym. J., 1983, 15, 389.
    [147] Sato, T.; Norisuye, T. and Fujita, H. Melting behavior of schizophyllum commune polysaccharides in mixtures of water and dimethyl sulfoxide. Carbohydr. Res., 1981, 95, 195.
    [148] Sato, H.; Yoshioka, Y. ; Yakoi, M.; Yamada, J. Disinct gelation of mechanism between linear and branched (1→3)-β-D-glucan as revealed by high-resolution solid-state ~(13)C NMR. Biopolymers, 1990, 29, 1689.
    [149] Zhang, L.; Zhang, X. ; Zhou, Q.; Zhang, P. ; Zhang, M.; Li, X. Triple helix of β-D-glucan from Lentinus edodes in 0.5M NaCl aqueous solution characterized by light scattering. Polym.J., 2001, 33, 317.
    [150] Zhang, L.; Li, X.; Zhou, Q.; Zhang X. and Chen, R. Transition from triple helix to coil of leatina in solution measured by SEC, Viscometry, and ~(13)C NMR. Polym. J. 2002, 34;443-449.
    [151] Itou, T.; Teramoto, A. Ordered structures in aqueous polysaccharide. 5 Cooperative order-disorder transition in aqueous schizophyllan. Macromalecules, 1986, 19, 1234.
    [152] Zhang, L.; Xu, X. Aggregation of aeromonas gum in aqueous solution. Polym.J 1999, 31, 150.
    [153] Zhang, L.; Xu, X.; Su, P. Effect of thermal history and concentration on the aggregation of Eriwinia gum in an aqueous solution. J. Polym. Sci. Part B., 2000, 38, 1352.
    
    
    [154] Zhang, L.; Ding, Q.; Zhang, P.; Zhu, R.; Zhou, Y. Molecular weight and aggregation behaviour in solution of β-D-glucan from Poria cocos sclerotium. Carbohydr Res., 1997, 303,193.
    [155] Ding, Q.; Jiang, S.; Zhang, L.; Wu, C. Laser light-scattering studies of paehyman. Carbohydr. Res., 1998, 308, 339.
    [156] Zhang, L.; Ding, Q.;Meng, D.; Ren, L.; Yang, G.; Liu, Y. Investigation of molecular masses and aggregation of β-D-glucan from Poria cocos sclerotium by size-exclusion chromatography. J. Chromatog. A., 1999, 839, 49.
    [157] Chihara, G Maeda, Y. Hamuro, J. Sasaki, T. and Fukuoka, F. Inhibition of mouse Sacroma 180 by polysaccharides from Lentinnus edodes (Berk.) Sing. Nature, 1969, 222, 687.
    [158] Suzuki, N.; and Wada, A. Hydrodynamic behavior of lentinan molecules is studied by quasielastic light-scattering. Carbohydr. Res., 1982, 109, 295.
    [159] Bluhm, T. L. and Sarko, A. The triple helical structure of lentinan, a linear β-(1→3)-D-glucan. Can. J. Chem., 1977, 55, 293.
    [160] Saito, H.; Ohki, T. and Sasaki, T. A ~(13)C-Nulear Magnetic Resonance study of polysaccharide gels. Molecular architecture in the gels consisting of fungal, branched (1→3)-β-D-glucans (lentinan and schizophyllan) as manifested by conformational changes induced by sodium hydroxide Carbohydr. Res., 1979, 74, 227
    [161] Maeda, Y.Y. and Chihara, G. Periodical consideration on the establishment of antitumor action in host and activation of peritoneal exudates cells by Lentinan. Gann., 1973, 64, 351.
    [162] Dresser, D.W. and Phillips, J. Immunology, 1974, 27,895.
    [163] Dennert, G. and Tucker, D. J. Natl. Cancer Inst., 1973, 51, 1727.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700