用户名: 密码: 验证码:
离子涂层毛细管的制备及其在毛细管电泳中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细管电泳(CE)和毛细管电色谱(CEC)具有高效、快速、样品用量小、溶剂消耗少和自动化程度高的特点使其成为快速崛起的新型微分离分析技术,在生物医学、药学、生物化学及环境等领域有巨大的应用潜力。它的发展依赖于电泳和电色谱理论的完善,仪器技术的改进和柱技术的发展。要使CE和CEC成为象HPLC那样的常规分析方法,不仅需要有高的选择性,还需要有好的重现性和稳定性。毛细管柱是决定分析分离性能的关键,表面修饰涂层不仅决定电渗流性质,而且能引入对溶质有保留的功能基团,增加选择性。研究适于CE和CEC的制柱方法和技术,制备柱容量大、选择性高和重现性好的毛细管柱,对促进CE和CEC理论和应用的发展都具有重要意义。毛细管管壁修饰技术的研究是CE和CEC领域的前沿研究课题。本论文研究了毛细管内壁修饰方法及其在CE和CEC中的应用。本论文包括如下主要研究内容。
     1.评述了离子涂层毛细管电泳和电色谱的应用研究进展。
     2.利用溶胶凝胶技术改进了二氧化锆涂层毛细管的制备方法,并系统的研究了非水体系中(甲醇以及甲醇和乙腈的混合溶剂)二氧化锆涂层毛细管在不同条件下的电渗流行为。二氧化锆涂层毛细管表现出双向电渗流,其方向和大小都和体系的性质有关,如pH~*,溶剂组成,电解质(Tris和醋酸铵)。并且二氧化锆涂层毛细管的pI随着乙腈含量增加变大。用生物碱作为探针考察了非水体系中二氧化锆涂层毛细管的电泳性能。溶剂组成对于分离度和选择性的影响也做了考察,同时在相同条件下与非涂层毛细管上的分离做了比较。
     3.利用溶胶凝胶技术将有序介孔二氧化钛膜引入到毛细管内壁对其进行了涂层改性。在不同的有机体系中系统的考察了其电渗流性质,如甲醇,甲酰胺,N,N-二甲基甲酰胺以及甲醇和乙腈的混合溶液。二氧化钛涂层毛细管在不同条件下表现出不同的电渗流性质,与各种参数相关,如溶剂组成,pH~*,电解质(Tris和醋酸铵)。同时用生物碱作为探针考察了非水体系中二氧化钛涂层毛细管的电泳性能。在相同条件下与非涂层毛
    
     细管上的分离做了比较。
    4.利用溶胶凝胶法和化学键合法制备了非高聚物有机磺酸基涂层毛细管。
     溶胶凝胶法,通过水解三甲氧基琉丙基硅烷和四甲氧基硅烷得到溶胶,
     然后将此溶胶涂覆到毛细管管壁老化;化学键合法则直接将三甲氧基疏
     丙基硅烷键合到毛细管内壁。经过上述处理后,毛细管经过30%HZOZ
     氧化得到磺酸基涂层毛细管。用两种方法制备的涂层毛细管的电渗流在
     所考察pH范围内基本上保持恒定,比未涂覆毛细管大。通过比较两种
     方法制备的涂层毛细管电渗流的大小,对硅轻基的屏蔽程度以及制备方
     法的重现性,化学键合法的涂层效率要高于溶胶凝胶法。另外还考察了
     电解质浓度,甲醇含量尤其是在水一甲醇体系中pH*对电渗流的影响。
     最后在6.5分钟之内用毛细管电泳模式实现了七种有机酸的分离,并且
     用开管毛细管离子交换电色谱模式对生物碱进行了分离。
    5一种新的大环化合物一葫【7]环联脉首次作为添加剂在毛细管电泳中得到
     了应用。与其他的大环化合物,如冠醚,环糊精,杯芳烃等相似,葫「7]
     环联脉能够通过它的空腔与各种客体分子形成包合物。因此可以预料葫
     【7]环联脉能够象其他的大环化合物一样用来改变毛细管电泳中的选择
     性。在运行过程中,葫[71环联脉在所考察的pH范围内带正电荷,能够
     吸附到毛细管管壁上,从而体现出反向电渗流行为。中性硝基苯类化合
     物,硝基甲苯,硝基苯酚,硝基苯胺以及甲基苯胺等几种位置异构体作
     为探针在各种条件下考察了葫【7]环联脉作为添加剂对其分离的影响,同
     时提出了可能的分离机理。
Capillary electrophoresis (CE) and capillary electrochromatography (CEC) are promising microseparation analysis techniques; they have the advantages of high efficiency, high speed, small sample consumption and high automation level. The development of CE and CEC is dependent on the improvements in instrumentation design, column technology and understanding of the underlying phenomena. However, it has a long way to go to become the routine analysis method as HPLC with high selectivity, good reproducibility and stability. The nature of capillary is critical for the separation. Based on these observations, the present author intends in this thesis to develop some fabrication techniques for ionic coating capillaries, and investigate their applications in CE and CEC. In addition, a novel macrocyclic molecule, cucurbit[7]uril, is for the first time proposed as an additive for CE separation.
    1.In Chapter 1, the development of the ionic coating for capillary electrophoresis and capillary electrochromatography is reviewed.
    2. In Chapter 2, a zirconia-coated capillary is prepared by means of sol-gel technique. Its electroosmotic flow (EOF) properties are investigated in a variety of nonaqueous media (methanol and mixtures of methanol and acetonitrile). The zirconia-coated capillary exhibits the switchable EOF whose direction and magnitude are strongly dependent on the properties of nonaqueous solvents composition, their apparent pHs (pH*), and the electrolytes used (hydroxymethyl aminomethane and ammonium acetate). It is found that the isoelectric point (pI) of the zirconia-coated capillary move to higher pH* with increasing acetonitrile content from 0 to 75%(V/V) when tris (hydroxymethyl) aminomethane is used as an electrolyte. The nonaqueous capillary electrophoresis (NACE) separations of several alkaloids are investigated in the positively charged zirconia-coated capillary. The effect of solvent composition on the separation resolution
     and selectivity is also studied. In addition,
    
    
    
    comparison of separation between coated and uncoated capillaries in nonaqueous media is performed.
    3. In Chapter 3, an ordered mesoporous titania film is introduced to coat a capillary by means of sol-gel technique. Its electroosmotic flow (EOF) property is investigated in a variety of nonaqueous media (methanol, formamide and N, N-dimethylformamide and mixtures of methanol and acetonitrile). The titania-coated capillary exhibits distinctive EOF behavior whose direction and magnitude are strongly dependent on various parameters such as the solvent composition, apparent pHs (pH*) and the electrolytes. The nonaqueous capillary electrophoresis (NACE) separation of several alkaloids is investigated in the positively charged titania-coated capillary. Comparison of separation between coated and uncoated capillaries under optimum nonaqueous condition is also carried out.
    4. In Chapter 4, two new methods, sol-gel and chemical bonding methods, are proposed for preparation of sulfonated fused-silica capillaries. In the sol-gel method, a fused-silica capillary is coated with the sol solution obtained by hydrolysis of 3-mercaptopropyl-trimethoxysilane (MPTS) and tetramethoxysilane, and followed by age; while in the chemical bonding method, a capillary is chemically bonded directly with MPTS. Then, the both resulting capillaries are oxidized with an aqueous solution of hydrogen peroxide solution (H2O2)(30%(m/m)) to obtain the sulfonated capillaries. The electroosmotic flow (EOF) for the sulfonated capillaries is found to remain almost constant within the studied pH range, and be greater than that of the uncoated capillary. However, the coating efficiency of the capillary prepared by chemical bonding method is higher than that by sol-gel method, by comparing their magnitude of the EOF, the degree of disguise of the silanol and reproducibility of prepar
引文
[1] Jorgenson J W, Lukacs K D. High-resolution separation based on electrophoresis and electroosmosis. J. Chromatogr. 218(1981) 209-216.
    [2] Jorgenson J W, Lukacs K D. Zone electrophoresis in open-tubular glass capillaries. Anal. Chem 53(1981) 1298-1302.
    [3] Pretorius V, Hopkins B J, Schieke J D. Electro-osmosis: A new concept for high-speed liquid chromatography. J. Chromatogr. 99(1974) 23-30.
    [4] Knox J H, Grant J H. Miniaturisation in pressure and electroendo- smotically driven liquid chromatography: some theoretical considerations. Chromatographia, 24(1987) 135-143.
    [5] Bartle K D, Myers P. Theory of capillary electrochromatography. J. Chromatogr. A916(2001) 3-23.
    [6] Ludtke S, Adam T, Unger K K. Application of 0.5-μm porous silanized silica beads in electrochromatography. J. Chromatogr. A786(1997)229-235.
    [7] 谢敏杰,冯钰镝,达世禄。使用含离子涂层柱的毛细管电泳和毛细管电色谱的研究进展,色谱,18(2000)503-507。
    [8] Melanson J E, Baryla N E, Lucy C A. Dynamic capillary coating for electroosmotic flow control in capillary electrophoresis. Trend anal chem. 20 (2001)365-374。
    [9] 康经武,陆豪杰,欧庆瑜。毛细管电泳涂层柱技术的进展,色谱,16(1998)26—29。
    [10] Klampfl C W, Katzmayr M U, Buchberger W, Basener N. Determination of
    
    low-molecular-mass ionic compounds in electrodeposition coatings by capillary electrophoresis with conductivity detection. J. Chromatogr. A 804(1998) 357-362.
    [11] Welch C F, Hoagland D A. Molecular weight analysis of polycations by capillary electrophoresis in a solution of neutral polymers. Polymer 42 (2001) 5915-5920.
    [12] Altria K D. Enhanced pharmaceutical analysis by CE using dynamic surface coating system, J. Pharm. Bio. Anal, 31(2003) 447-453.
    [13] Roche M E, Anderson M A, Oda R P, Riggs B L, Strausbauch M A, Okazaki R, Wettstein P J, Landers J P. Capillary Electrophoresis of Insulin-like Growth Factors: Enhanced Ultraviolet Detection Using Dynamically Coated Capillaries and On-Line Solid-Phase Extraction. Anal. Biochem. 258(1998)87-95.
    [14] Sun B, Macka M, Haddad P R. Separation of organic and inorganic arsenic species by capillary electrophoresis using direct spectrophoto- metric detection Electrophoresis 23(2002) 2430-2438.
    [15] Quang C, Malek A, Khaledi M G. Separation of peptides and proteins by capillary electrophoresis using acidic buffers containing tetraalkyl-ammonium cations and cyclodextrins. Electrophoresis 24(2003) 824-828.
    [16] Li J, Fritz J S. Separation of anilines by capillary electrophoresis with small ionic compounds as buffer additives, J. Chromatogr. A 840 (1999) 269-279.
    [17] Jiang T-F, Gu Y-L, Liang B, Li J-B, Shi Y-P, Ou Q-Y. Dynamically coating the capillary with 1-alkyl-3-methylimidazolium-based ionic liquids for separation of basic proteins by capillary electrophoresis. Anal. Chim. Acta 479(2003) 249-254.
    [18] Chiu R W, Jimenez J C, Monnig C A. High molecular weight polyarginine as a capillary coating for separation of cationic proteins by capillary electrophoresis. Anal. Chim. Acta 307(1995) 193-201.
    [19] Verzola B, Sebastiano R, Righetti P G, Gelfi C, Lapadula M, Citterio A. Mechanism of action of quaternary diamino quenchers in capillary zone electrophoresis. Electrophoresis 24(2003)121-129.
    
    
    [20] 姜延福,陆豪杰,李菊白,李辰,欧庆瑜.正电荷聚合物动态涂敷毛细管电泳柱对碱性蛋白的分离,分析化学 30(2002)144-147.
    [21] Kang J, Wistuba D, Schurig V. Fast enantiomeric separation with vancomycin as chiral additive by co-electroosmotic flow capillary electrophoresis: Increase of the detection sensitivity by the partial filling technique. Electrophoresis 24(2003) 2674-2679.
    [22] Jensen A G, Hansen S H. Separation of hypericins and hyperforins in extracts of Hypericum perforatum L.using non-aqueous capillary electrophoresis with reversed electro-osmotic flow. J. Pharm. Biorn. Anal. 27(2002) 167-176.
    [23] Hansen S H, Jensen M E, Bjφnsdottir Ⅰ. Assay of acetylsalicylic acid and three of its metabolites in human plasma and urine using non-aqueous capillary electrophoresis with reversed electroosmotic flow.d. Pharma. Biota. Anal. 17 (1998)1155-1160.
    [24] Finkler C, Charrel H, Engelhardt H. Permanent coated capillaries with reversed electroosmotic flow for anion analysis, J. Chromatogr. A 822(1998) 101-106。
    [25] Liu C-Y, Ho Y-W, Pal Y-F.J. Chromatogr. A 897 (2000) 383-392.
    [26] Qin W, Wei H, Fong S, Li Y. 1,3-Dialkylimidazolium-based room-temperature ionic liquids as background electrolyte and coating material in aqueous capillary electrophoresis, J. Chromatogr. A 985(2003) 447-454.
    [27] Qin W, Sam F, Li Y. An ionic liquid coating for determination of sildenafil and UK-103,320 in human serum by capillary zone electrophoresis-ion trap mass spectrometry. Electrophoresis 23(2002) 4110-4116.
    [28] Carlsson Y, Hedeland M, Bondesson U, Pettersson C. Non-aqueous capillary electrophoretic separation of enantiomeric amines with(-)-2,3:4,6-di-oisopropylidene-2-keto-L-gulonic acid as chiral counter ion. J. Chromatogr. A 922(2001)303-311.
    [29] Towns J K, Regnier F E. Polyethyleneimine-bonded phases in the separation of protein by capillary electrophoresis. J. Chromatogr 516(1990) 69-78.
    [30] Smith J T, Rassi Z El.Capillary zone electrophoresis of biological substances with surface-modified fused silica capillaries with switchable electroosmotic
    
    flow. JHRC 15(1992) 573-578.
    [31] Huang M, Lee M L. J. Microcol. Sep, 1992, 4:491-496.
    [32] Malik A, Zhao Z, Lee M L. J. Microcol. Sep, 1993, 5:119-125.
    [33] Xu R J, Vidal-Madjar C, Sebille B, Carlos D-M J. Separation of basic proteins by capillary zone electrophoresis with coatings of a copolymer of vinylpyrrolidone and vinylimidazole. J. Chromatogr. 730(1996) 289-295.
    [34] Belder D, Wamke J. Electrokinetic effects in poly(ethylene glycol)-coated capillaries induced by specific adsorption of cations. Langmuir 17(2001) 4962-4966.
    [35] Li S, Weber S G. Separation of neutral compounds in nonaqueous solvents by capillary zone electrophoresis.J.Am. Chem.Soc 122(2000) 3787-3788.
    [36] Wu Q, Lee M L, Harrison R G. Performance of metal complex substituted polysiloxanes in capillary electrophoresis and capillary electrochromatography. J. Chromatogr. A 967(2002) 289-301.
    [37] Wu Q, Lee M L, Harrison R G.Metal complex-substituted polysiloxanes as novel coatings for capillary electrophoresis and capillary electrochromatography. J. Chromatogr. A 954 (2002)247—258.
    [38] Hardenborg E, Zuberovic A, Ullsten S, Soderberg L, Heldin E, Markides K E. Novel polyamine coating providing non-covalent deactivation and reversed electroosmotic flow of fused-silica capillaries for capillary electrophoresis. J. Chromatogr. A1003(2003)217-221.
    [39] Burt H, Lewis D M, Tapley K N.Resin coating for capillaries giving a net positive charge and great potential for customized modification of surface properties. J. Chromatogr. A 739(1996) 367-371.
    [40] Sun P, Landman A, Barker G E, Hartwick R A. Synthesis and evaluation of anionic polymer-coated capillaries with pH-independent electro-osmotic flows for capillary electrophoresis.J. Chromatogr. A 685(1994) 303—312.
    [41] Minnoor E, Liu Y, Pietrzyk D J. Performance of metal complex substituted polysiloxanes in capillary electrophoresis and capillary electrochromatography. J. Chromatogr. A 967 (2002) 289-301.
    
    
    [42] Liu Y, Pietrzyk D J. Separation of weak organic acids and bases by capillary zone electrophoresis in a sulfonated-polymer wall-modified open tubular fused-silica capillary. J. Chromatogr. A804 (1998)337-348.
    [43] Molina M, Silva M. Micellar eleetrokinetic chromatography: Current developments and future. Electrophoresis 23(2002) 3907-3921.
    [44] Katayama H, Ishihama Y,Asakawa N. Development of novel capillary coating based on physical adsorption for capillary electrophoresis. Anal. Sci. 14(1998) 407-408.
    [45] Katayama H, Ishiharna Y,Asakawa N. Stable capillary coating with successive multiple ionic polymer layers. Anal. Chem. 70(1998) 2254-2260.
    [46] Bendahl L, Hansen S H, Gammelgaard B.Capillaries modified by noncovalent anionic polymer adsorption for capillary zone electrophoresis, micellar electrokinetic capillary chromatography and capillary electrophoresis mass spectrometry. Electrophoresis 22(2001) 2565-2573.
    [47] Lanz C, Thormann W. Capillary zone electrophoresis with a dynamic double coating for analysis of carbohydrate-deficient transferrin in human serum: Impact of resolution between disialo- and trisialotransferrin on reference limits. Electrophoresis 24(2003) 4272-4281.
    [48] Lanz C, Kuhn M, Bortolotti F, Tagliaro F, Thormann W. Evaluation and optimization of capillary zone electrophoresis with different dynamic capillary coatings for the determination of carbohydrate-deficient transferrin in human serum. J. Chromatogr. A979 (2002) 43-57.
    [49] Lanz C, Marti U, Thormann W. Capillary zone electrophoresis with a dynamic double coating for analysis of carbohydrate-deficient transferrin in human serum: Precision performance and pattern recognition. J. Chromatogr. A1013 (2003) 131-147.
    [50] Lurie I S, Panicker S, Hays P A, Garcia A D, Geer B L. Use of dynamically coated capillaries with added cyclodextrin for the analysis of opium using capillary electrophoresis. J. Chromatogr. A 984(2003) 109-120.
    [51] Lurie I S, Hays P A, Garcia A D, Panicker S. Use of dynamically coated
    
    capillaries for the determination of heroin, basic impurities and adulterants with capillary electrophoresis, d. Chromatogr. A 984(2003) 109-120.
    [52] Chevigne R, Louis P, US patent 5 611 903, 1997.
    [53] Boone C M, Jonkers E Z, Franke J P, Zeeuw R A, Ensing K. Dynamically coated capillaries improve the identification power of capillary zone electrophoresis for basic drugs in toxicological analysis, J. Chromatogr. A 927 (2001)203-210.
    [54] Lurie I S, Bethea M J, McKibben T D, Hays P A, Sahai P R, Garcia A D, Weinberger R. Use of dynamically coated capillaries for the routine analysis of methamphetamine, amphetamine, MDA, MDMA, MDEA, and cocaine using capillary electrophoresis, J. Forensic. Sci. 2001 1025-1032.
    [55] Vanhoenacker G, Escaille F, Keukeleire D D, Sandra P. Dynamic coating for fast and reproducible determination of basic drugs by capillary electrophoresis with diode-array detection and mass spectrometry, J. Chromatogr. B 799(2004) 323-330.
    [56] Xie M J, Feng Y Q, Da S L. Capillary electrophoresis using zirconia-coated fused silica capillaries, J. Sep. Sci. 24(2001) 62-66.
    [57] Xie M J, Feng Y Q, Da S L, Meng D Y, Ren L W. Capillary electrophoresis and open tubular capillary electrochromatography using a magnesia-zirconia coated capillary. Anal Chim. Acta 428(2001) 255-263.
    [58] Bellaistre M C, Mathieu O, Randon J, Rocca J L. Control of eleetroosmotic flow in zirconia-coated capillaries. J Chromatogr A 971(2002) 199-205.
    [59] Tsai P., Wu C. -T., Lee C. S. Electrokinetic studies of inorganic coated capillary. J. Chromatogr. B657(1994) 285-290.
    [60] Fujimoto C. Titanium dioxide coated surfaces for capillary electrophoresis and capillary electroehromatography. Electrophoresis 23(2002) 2929-2937.
    [61] Malik A. Advances in sol-gel based columns for capillary electrochromatography: Sol-gel open-tubular columns. Electrophoresis 23(2002)3973-3992.
    [62] Kapnissi-Christodoulou C P, Zhu X, Warner I M. Analytical separations in
    
    open-tubular capillary electrochromatography. Electrophoresis 24(2003) 3917-3934.
    [63] 叶明亮,邹汉法,刘震,朱军,张玉奎.开管毛细管电色谱进展,分析测试学报 18(1999)78—82。
    [64] Sawada H, Jinno K.Preparation of capillary columns coated with linear polymer containing hydrophobic and charged groups for capillary electrochromatography. Electrophoresis 20(1999) 24-30.
    [65] Sebastiano R, Gelfi C, Righetti P G, Citterio A. Novel, trifunctional diamine for silica coating in capillary zone electrophoresis. J. Chromatogr. A 894 (2000) 53-61.
    [66] Breadmore M C, Macka Mi, Avdalovic N, Haddad P R. Open-tubular ion-exchange capillary electrochromatography of inorganic anions. Analyst 125(2000)1235-1241.
    [67] Charvatova J, Kral V, Deyl Z. Capillary electrochromatographic separation of aromatic amino acids possessing peptides using porphyrin derivatives as the inner wall modifiers. J. Chromatogr. B770 (2002) 155-163.
    [68] Lin S-Y, Chen W-H, Li C-Y. Nucleoside monophosphates recognition using macrocyclic polyamine bonded phase in capillary electrochromato- graphy, Electrophoresis 23(2002)1230-1238.
    [69] Hsu J C, Chen W H, Liu C Y. Preparation of a macrocyclic polyamine-bonded column for the electrophoretic separation of inorganic and organic anions. Analyst 122(1997)1393-1398.
    [70] Liu C Y, Chen W H. Electrophoretic separation of inorganic anions with an anion complexone-modified capillary column. J. Chromatogr. A 815(1998) 251-263.
    [71] Chen W H, Liu C Y. Macrocyclic polyamine as a selective modifier in a bonded-phase capillary column for the electrophoretic separation of aromatic acids. J. Chromatogr. A 848(1999) 401-416.
    [72] Chen W H, Lin S Y, Liu C Y. Capillary electrochromatographic separation of metal ion species with on-line detection by inductively coupled plasma mass
    
    spectrometry. Anal Chim. Acta 410(2000) 25-35.
    [73] Chen W-H, Lin C-C, Chen T-S, Misra T K, Liu C-Y. Capillary electrochromatographic analysis of aliphatic mono-and polycarboxylic acids. Electrophoresis 24(2003)970-977.
    [74] 王园朝,曾昭睿,管娜,付恩琴,程介克。溶胶-凝胶法大环多胺的开管电色谱柱的制备及在苯胺类化合物分离中的应用。分析化学 30(2002)227—230.
    [75] Guan N, Zeng Z R, Wang Y C, Fu E Q, Cheng J K. Open tubular capillary electrochromatography in fused-silica capillaries chemically bonded with macrocyclic dioxopolyamine. Anal. Chim. Acta 418(2000) 145-151.
    [76] Chen G J, Lee N M, Hu C, Liu Y. Chemical modification of capillary column for electrophoretic separations of transition metal ions. J. Chromatogr. 699(1995) 343-351。
    [77] Lee D, Shamsi S A.Chiral separation of anionic and neutral compounds using a hepta-substituted cationic beta-cyclodextrin as a chiral selector in capillary electrophoresis. Electrophoresis 23(2002) 1314-1319.
    [78] O'Keeffe F,Shamsi S A,Darcy R,Schwinte P,Warner I M.A persubstituted cationic β-cyclodextrin for chiral separation. Anal. Chem. 69(1997) 4773-4780.
    [79] Haynes J L, Shamsi S A, Warner I M. Cationic β-cyclodextrin derivative for chiral separations. J. Chromatogr. A 803(1998) 261-271.
    [80] Tanaka Y,Terabe S. Enantiomer separation of acidic racemates by capillary electrophoresis using cationic and amphoretic β-cyclodextrins as chiral selectors. J. Chromatogr. A781(1997)151-160.
    [81] Wang F, Loughlin T, Dowling T,Bicker G,Wyvratt J. Enantiomeric separation of enzymatic hydrolysis products of dihydropyrimidinone methyl ester with cationic cyclodextrin by capillary electrophoresis. J. Chromatogr. A 872(2000) 279-288.
    [82] Yamamura H,Akasaki A, Yamada Y,Kano K,Katsu-hara T,Araki S,Kawai M,Tsuda T. Capillary zone electrophoretic chiral discrimination using a cationic
    
    cyclodextrin derivative: Determination of velocity and association constants of each enantiomer of the amino acid derivative with 6-trimethylammonio-deoxy-beta-cyclodextrin. Electrophoresis 22(2001) 478-483.
    [83] Galaverna G, Corradini R,Dossena A, Marchelli R,Vec-chio G. Histaminemodified cationic beta-cyclodextrins as chiral selectors for the enantiomeric separation of hydroxy acids and carboxylic acids by capillary electrophoresis. Electrophoresis 20(1999)2619-2629.
    [84] Zhang S, Zhang J, Horváth C. Capillary electrochromatography of protein with polymer-based strong-cation-exchange microspheres, J. Chromatogr. A 965 (2002)83—92.
    [85] Zhang M, Rassi Z EI.Capillary electrochromatography with novel stationary phases: Ⅱ Studies of the retention behavior of nucleosides and bases on capillaries packed with octadecyl-sulfonated-silica microparticles. Electrophoresis 20(1999) 31-36.
    [86] Zhang M, Yang C, Rassi Z EI. Capillary electrochromatography with novel stationary phases.3.retention behavior of small and large nucleic acids on octadecyl-sulfonated-silica. Anal. Chem. 71(1999)3277-3282.
    [87] Zhang M, Ostrander G K, Rassi Z EI. Capillary electrochromatography with novel stationary phases Ⅳ. Retention behaviour of glycosphingolipids on porous and non-porous octadecyl sulfonated silica, J. Chromatogr. A887(2000) 287-297.
    [88] Klampfl C W, Hilder E F, Haddad P R. Investigations on the behaviour of acidic, basic and neutral compounds in capillary electrochromatography on a mixed-mode stationary phase, J. Chromatogr. A888(2000) 267—274.
    [89] Pirogov A V, Buchberger W. Ionene-coated sulfonated silica as a packing material in the packed-capillary mode of electrochromatography, J. Chromatogr. A916(2001)51-59.
    [90] Chen T-S, Liu C-Y. Histidine-functionalized silica and its copper complex as stationary phases for capillary electrochromato-graphy. Electrophoresis 22(2001)
    
    2606-2615.
    [91] Constantin S, Bicker W, Zarbl E, Lmmerhofer M, Lindner W. Enantioselective strong cation-exchange molecular recognition materials: Design of novel chiral stationary phases and their application for enantioseparation of chiral bases by nonaqueous capillary electrochromatography Electrophoresis 24(2003) 1668-1679.
    [92] Fanali S, Catarcini P, Presutti C, Quaglia M G, Righetti P-G. A glycopeptide antibiotic chiral stationary phase for the enantiomer resolution of hydroxy acid derivatives by capillary electrochromato- graphy. Electrophoresis 24(2003) 904-912.
    [93] Chen X, Jin W, Qin F, Liu Y, Zou H, Guo B. Capillary electrochromatographic separation of enantiomers on chemically bonded type of cellulose derivative chiral stationary phases with a positively charged spacer. Electrophoresis 24(2003) 2559-2566.
    [94] Xia D S, Feng Y Q, Da S L. Capillary electrochromatography with alkylphosphonate-modified magnesia-zirconia as the chromatographic support material. J. Liq Chromatgr. & Rel. Tech. 24(2001)1881-1894.
    [95] Tang Q, Lee M L.Capillary electrochromatography using continuous-bed columns of sol-gel bonded silica particles with mixed-mode octadecyl and propylsulfonic acid functional groups. J. Chromatogr. A 887(2000) 265-275.
    [96] Bedair M, Rassi Z EI. Capillary electrochromatography with monolithic stationary phases: 1.preparation of sulfonated stearyl acrylate monoliths and their electrochromatographic characterization with neutral and charged solutes. Electrophoresis 23(2002) 2938—2948.
    [97] Shediac R, Ngola S M, Throckmorton D J, Anex D S, Shepodd T J, Singh A K, Shepodd J, Singh A L. Reversed-phase electrochromato-graphy of amino acids and peptides using porous polymer monoliths. J. Chromatogr. A 925(2001) 251—263.
    [98] Zhang M, Rassi Z EI. Capillary electrochromatography with polyacrylamide monolithic stationary phases having bonded dodecyl ligands and sulfonic acid
    
    groups: Evaluation of column performance with alkyl phenyl ketones and neutral moderately polar pesticides. Electrophoresis 22(2001) 2593-2599.
    [99] Liao J-L, Chen N, Ericson C, Hjertén S. Preparation of continuous beds derivatized with one-step alkyl, and sulfonated groups for capillary electrochromatography. Anal. Chem. 68(1996) 3468-3472.
    [100] Liu Z, Otsuka K, Terabe S, Motokawa M, Tanaka N. Physically adsorbed chiral stationary phase of avidin on monolithic silica column for capillary electrochromatography and capillary liquid chromato- graphy, Electrophoresis 23(2002) 2973-2981.
    [101] L ammerhofer M, Peters E C, Yu C, Svec F, Fréchet JM. J. Chiral monolithic columns for enantioselective capillary electrochromato- graphy prepared by copolymerization of a monomer with quinidine functionality. 1. Optimization of polymerization conditions, porous properties, and chemistry of the stationary phase. Anal. Chem. 72(2000) 4614-4622.
    [102] L ammerhofer M, Svec F, Fréchet JM J, L indner W G. Chiral monolithic columns for enantioselective capillary electrochromato-graphy prepared by copolymerization of a monomer with quinidine functionality. 2. Effect of chromatographic conditions on the chiral separations. Anal. Chem. 72(2000) 4623-4628.
    [103] Xiong B H, Zhang L H, Zhang Y K, Zou HF, Wang JD. Capillary electrochromatography with monolithic poly(styrene-co-divinyl- benzene-co-methacrylic acid) as the stationary phase. J. High. Resol. Chromatogr. 23(2000) 67-72.
    [104] Fu H, Jin W, Xiao H, Xie C, Zou H. Preparation of Zwitterionic Monolithic Capillary Column for Capillary Electrochromatography. J. Chromatogr. A 2004.
    [105] Shi Z-G, Feng Y-Q, Xu L, Da S-L, Zhang M. Preparation and evaluation of zirconia-coated silica monolith for capillary electrochromatography. Talanta 63(2004) 593-598.
    [106] Belder D, Ludwig M. Surface modification in microchip electrophoresis.
    
    Electrophoresis 24(2003) 3595-3606.
    [107] Doherty E A S, Meagher R J, Albarghouthi M N, Barron A E. Microchannel wall coatings for protein separations by capillary and chip electrophoresis. Electrophoresis 24(2003) 34-54.
    [108] Dou Y-H, Bao N, Xu J-J, Chen H-Y. A dynamically modified microfluidic poly(dimethylsiloxane) chip with electrochemical detection for biological analysis. Electrophoresis 23 (2002)3558-3566.
    [109] Breadmore M C, Shrinivasan S, Wolfe K A, Power M E, Ferrance J P, Hosticka B, Norris P M, Landers J P. Towards a microchip-based chromatographic platform. Part 1: Evaluation of sol-gel phases for capillary electrochromatography. Electrophoresis 23(2002) 3487-3495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700