用户名: 密码: 验证码:
TATB基高聚物粘结炸药(PBX)配方设计的分子水平研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子化学向材料化学发展是大势所趋。研究复合材料组分分子间相互作用已成为倍受化学家和材料学家关注的领域。本论文主要基于理论计算,研究TATB为基的高聚物粘结炸药(PBX)中的分子间相互作用,亦即从超分子结构和分子水平上解释组分间界面作用,目的是为TATB基PBX配方设计提供丰富数据和理论指导。
     借助量子化学半经验MO方法和计算化学MM方法,对TATB/高聚物超分子体系分子间相互作用进行模拟计算。MO方法主要包括AM1、PM3和MNDO等,而MM则基于PCFF和COMPASS二种力场。不同方法或力场的计算结合能可相互比较、共同求证。本论文细致总结了建立计算模型的过程和重要性。MO法计算气相超分子体系只能取有限模型,为了简易直观和便于比较,MM和MO一律采用原子簇模型;从计算实践中总结出“尺寸匹配原则”,以达到消除端基影响和避免模拟偏离实际的目的。TATB/高聚物的相互作用能与链级数n的变化关系证明了遵循此原则的必要性。
     考察TATB与各高聚物的作用方式,借助化学直觉,细致优化各种可能的作用构型,并反复比较各稳定构型以确定能反映子体系作用特点且能量相对最小的构型;对于系列TATB/高聚物相互作用能的比较,有了相对意义的结果即能满足要求。相关共聚物与TATB的结合能以“单体或组分加和法则”求得,相对于结构相似的高聚物而言,这些结果是可信的。
     通过3种MO方法、2种MM力场计算结合能间的线性相关分析,求得MO与COMPASS的相关性优于与PCFF的相关性。当合理摒弃个别如TATB/PVA和TATB/PVB的结合能时,MO与COMPASS计算结果的线性相关系数(R)达到0.96以上。通过综合比较三种MO方法(AM1、PM3、MNDO)和COMPASS计算TATB与系列高聚物的结合能,按结合能相对大小进行排序,发现PVB(或PVA)、PAN、PVDF、Nylon系列以及F2311、F2603等均与TATB有较大的结合能,这就为选择品优粘结剂设计PBX奠定了基础。
As the development trend of molecular Chemistry penetrating to material Chemistry, the study of intermolecular interactions occurring in composite materials has become a hot scientific field and drawn much, more attention of chemists and materials scientists. Through theoretical study in this thesis, the intermolecular interactions of TATB (1,3,5-Triamino-2,4,6-Trinitrobenzene,) polymer-bonded explosive (PBX) was studied. And from the point of view of studying supermolecular configuration or on the molecule level, the interface action of materials was explained. The study on the intermolecular interactions would provide much data and theory guidance for the direction of producing PBX based on TATB.
    The supermolecular system of TATB/polymer was simulated and computed in virtue of quantum Chemistry and computational Chemistry. According to the computational condition and method, semiempirical Molecular Orbital methods (MO) and Molecular Mechanics (MM) were chosen. With regard to the first method, that was MO, AM1, PM3, MNDO and so on were involved in it. And MM mainly included PCFF or COMPASS force field. Then with the aid of MM and MO, the relative comparison between the computed binding energies of different method or force field could make certain that the results would be trusted. Besides these, constructing model was of importance and its process was summarized in detail. Because MO can only optimize gas-phase supermolecules, which decided that only few atoms had to be chosen, atomic cluster model was adopted in both MM and MO optimization. Above all, the "Principle of dimension matching" was summarized from the practice, so that the effect of chain-terminating atoms would be ignored and the deviati
    on of simulation was reduced. The relation between the binding energies of TATB/polymer and the chain series n was explored . From this point of view, we proved that following the "Principle of dimension matching" was of necessity.
    By the aid of chemistry instinct, different interacting manners were searched in detail firstly. Then a series of possible configurations were optimized. And the optimized configurations must reflect the characteristics of sub-system. Though it was impossible to gain an absolute least energy, the relative least energies of series TATB/polymer could be gotten. Significantly, the relative meaningful results would satisfy the needs of comparison. Concerning the calculation of binding energies for these copolymerized compound concerned and TATB, the "Principle of monomer or component addition" should be
    
    
    
    
    followed. Especially for these copolymerized compounds with similar configuration, the results were authentic.
    Through analysis of linear correlation between the binding energies which were computed by three MO methods and MM with different force fields, the conclusion was drawn that the correlation of energies computed by MO and COMPASS was superior to that of energies of MO and PCFF computation. When individual binding energies of supermolecule such as TATB/PVA and TATB/PVB were excluded reasonably, the correlative coefficient of MO method and the COMPASS force field was up to 0.96. After the binding energies were wholly compared according to the sequence of energy's numerical value, these energies of TATB and such polymers which included PVB (or PVA), PAN, PVDF, nylon, F2311 and F2603 were much greater, which established the base for the selection of bonds and design of PBX.
引文
[1] 林尚安,陆耘,梁兆熙.高分子化学.北京:科学出版社,1998.
    [2] G.METZGER, M.FERGUSON, A.GLAUSER. J.Comp.Chem., 1997, 18, 70-79.
    [3] Paval Hobza, Camile Sandorfy. Non-empirical calculations on all the 29 possible DNA base pairs. J.Am.Chem., 1987, 109, 1302-1307.
    [4] P.Hobza, H.L.Selzle, E.W.Schlag. Chem.Rev., 1994, 94, 1769-1777.
    [5] Ingrid G.Voigt-Martin, Gao Li, A. Yakimanski. J.Am.Chem., 1996, 118, 12830.
    [6] Jinshan Li, Heming Xiao. ACTA PHYSICO-CHIMICA SINICA, 2000, 16(1), 36-39.
    [7] Ju, Xue-Hai, Xiao, He-Ming, Tan, Jin-Zhi. CHINESE JOUNAL OF CHEMISTRY. 2002, 20, 629-637.
    [8] 李金山,肖鹤鸣,董海山.PBX量子化学研究—TATB与甲烷,聚乙烯分子间的相互作用.爆炸与冲击,2000,20(3),221-227.
    [9] Jinshan Li, Heming Xiao. ACTA CHIMICA SINICA. 2001, 59(5), 653-658.
    [10] 肖鹤鸣,李金山,董海山.高能体系分子间相互作用研究—含NNO_2和NH_2混合物.化学学报,2000,58(3),297-302.
    [11] Dider Delpeyroux, Pierre Charrue, Philipp Simonetti. High Temperature-High Pressure. 1998, 30, 625-628.
    [12] BETSY M. RICE, SHARMILA V. PAI, JENNIFER HARE. Combustion & Flame. 1999, 118(3), 445-448, 450, 454, 456.
    [13] Michael J.S.Dewar J.Phys.Chem. 1995, 89, 2145-2150.
    [14] 董润安,肖连阶,姜德珍.高聚物NTO粘结的研究.爆炸与冲击,1995,15(2),118.
    [15] S.Kakar, A.J.Nelson, R.Trreusch, C.Heske. PHYSICALREVIEW B.2000, 62(23), 15666-15671.
    [16] Kim K.Baldridge, Jay S.Siegel. J.Am.Chem.Soc. 1993, 115, 10782-10785.
    [17] Christine J.Wu, Laurece E.Fried. J.Phys.Chem. A. 2000, 104, 6447-6452.
    [18] J.Shame, W.L.Garrett, F.J.Owens, V.L.Vogel. J.Phys.Chem. 1982, 86, 1657-1661.
    [19] 潘祖仁,孙经武.高分子化学.北京:化学工业出版社,1980.
    [20] 姬广富,肖鹤鸣,董海山.TATB固体与表面吸附水的相互作用研究.化学学报,2002,60(7),1209-1214.
    [21] 张德纯,张艳秋.硝基苯胺化合物的研究.火炸药学报,1997,2,19-21.
    [22] 李金山,曾刚.多硝基芳香化合物撞击感度的量子化学研究.火炸药学报,1997,2,56-57.
    [23] 聂福德,杨雪海.HMX/TATB基PBX的感度与表面形态的关系探索.火炸药学报,2001,3,20-21.
    [24] 宋华杰,董海山,郝莹.玻璃化温度与DMA测量频率关系的研究.含能材料,2001,9(1),10-12.
    
    
    [25] 李玉斌,周玉琪.塑料粘结药柱:PTATB的膨胀规律研究.含能材料,2001,9(3),139-141.
    [26] 刘佳林,张文传.偶联剂TATB与相互作用机理的研究.高分子材料科学与工程,2001,17(4),132-133.
    [27] 宋华杰,董海山,郝莹.动态力学分析技术评价TATB/氟聚物复合材料界面.爆炸与冲击,2001,21(4),287-289.
    [28] 孙杰,聂福德.TATB与氟聚物界面张力及粘附功的计算.粘结,2001,22(1),27-28.
    [29] Zdzislaw Latajka, Yves Bouteiller. J.Chem.Phys. 101 (11), 9793-9799.
    [30] T.B.Brill, K.J.James. J.Phys.Chem. 1993, 97, 8752-8758.
    [31] P.A.URTIEW, C.M.TARVER, J.L.MAIENSCHEIN, W.C.TAO. Combustion & Flame, 105(1/2), 43-53.
    [32] Axel D.Becke. J.Chem.Phys. 1993, 98(7), 5648-5651.
    [33] David Adam, Konstantin Karaghiosoff, Thoms M. Klapotke, Gerhard Holl, Manfred Kaiser. Propellants, Explosives, Pyrotechnics. 2002, 27, 7-11.
    [34] 肖鹤鸣.群论基础及其化学应用.北京:兵器工业出版社,1987.
    [35] 唐敖庆,杨忠志,叶元杰.大分子体系量子化学.长春;吉林大学出版社,2000.
    [36] Bancai(Pun Choi)LI.Fundamentals of Physits.北京:化学工业出版社,1999.
    [37] 肖鹤鸣.硝基化合物的分子轨道理论.北京:国防工业出版社,1993.
    [38] 肖鹤鸣,陈兆旭.四唑化学的现代理论.北京,科学出版社,2000.
    [39] 谭金芝,肖鹤鸣,贡雪东.硝酸乙酯分子间相互作用的ab initio研究.化学学报,2002,60(2),200-206.
    [40] 谭金芝,肖鹤鸣.硝酸甲酯分子间相互作用的DFT和ab initio比较.物理化学学报,2002,18(4),307-314.
    [41] 刘清,刘培德.炸药在弱冲击下热点形成的微观机理数值计算.兵工学报,1996,249.
    [42] 王晓川.TATB粒子表面改性研究.化学学报,2001,1,33-35.
    [43] N.L.Allinger. J.Am.Chem. Soc., 1977, 99, 8127.
    [44] W.D.Cornell, P.Cieplak, C.I.Bayly, I.R.Gould, K.M.Merz, D.M.Ferguson, D.C.Spellmeyer, T.Fox, J.W.Caldwell and P.A.Kollman. J.Am.Chem.Soc., 1995, 117, 5179.
    [45] D.A.Pearlman and P.A.Kollman. J.Chem.Phys., 1990, 94, 4532.
    [46] M.M.Szczesniak, G.Chalasinski, S.M.Cybulski S.Scheiner. J.Chem.Phys., 1990, 93, 4243.
    [47] S.J.Weiner, P.A.Kollman, D.T.Nguyen, D.A.Case. J.Comput.Chem., 1986, 7230.
    [48] 肖继军,姬广富.环三甲撑三硝胺(RDX)结构和性质的(DFT)研究.结构化学,2002,21(4),437-441.
    [49] (美)勒维纳(I.N.Levine),宁世光(译).量子化学.北京:人民教育出版社,1980.
    [50] 周公度,段连运.结构化学基础.北京:北京大学出版社,1995.
    [51] 孙业斌,许桂珍.从炸药装药装备现状看21世纪发展趋势.火炸药学报,2001,1,69-72.
    
    
    [52] Dewar M J S, Thiel W. J.Am.Chem.Soc., 1977, 99, 4899-4907.
    [53] Stewart J J P. J.Comp.Chem., 1989, 10, 209-220.
    [54] H.Graboske. Science & Technology Review., 1997, 3.
    [55] B.J.Ransil. J.Chem.Phys., 1961, 34, 2109.
    [56] Li, J.-S.; Xiao, H.-M.; Dong, H.-S. Chin. J.Chem. 2000, 18, 815.
    [57] Xiao, H.-M.; Li, J.-S.; Dong, H.-S. J.Phys.Org.Chem. 2001, 14, 644.
    [58] Susan J.Mole, Xuefeng Zhou, Ruifeng Liu. J.Phys.Chem., 1996, 100, 14665-14671.
    [59] 陈敏伯.追求“第一原理”—从理论化学到分子设计.湖南:湖南教育出版社,1999.
    [60] 杨玉良,胡汉杰.高分子物理.北京:化学工业出版社,2001.
    [61] [荷]Frenkel & Smit(汪文川等译).分子模拟—从算法到应用.北京:化学工业出版社,2002.
    [62] 邵学广,蔡文生.化学信息学.北京:科学出版社,2001.
    [63] 仇缀百.药物设计学.北京:高等教育出版社,1999.
    [64] 封继康.超分子体系弱相互作用的量子化学计算.化学通报,1995,10,25-28.
    [65] 郭辉瑞,陶朱,祝黔江,薛赛风.配位化学中的C-H…π非键弱相互作用.无机化学学报,2002,18(5),435-441.
    [66] 徐彼杰,侯廷军,王俊梅,廖宁,骆宏鹏,郭森立.基于分子间相互作用的分子设计系统-PUMDS.计算机与应用化学,1999,16(5),335-336.
    [67] 陈强,谭民裕,刘伟生.超分子中分子间弱相互作用力的研究方法概述.化学通报,2001,4,236-239.
    [68] 陈光巨,程玉华.大van der Waals体系的一种优化方法.科学通报,2001,46(9),720-722.
    [69] 刘祁淘.配体间的弱相互作用—从配位化学到超分子化学.辽宁大学学报自然科学版,2000,27(1),1-8.
    [70] 郭辉瑞,陶朱,祝黔江,薛赛凤,罗绪强.X—H…π相互作用的研究进展.贵州大学学报自然科学版,2002,19(1),79-86.
    [71] 朱维良,蒋华良,陈凯先,嵇汝运,曹阳.生物大分子体系量子化学计算方法新进展.化学进展,1999,11(4),367-374.
    [72] 朱维良,蒋华良,陈凯先,嵇汝运,曹阳.分子间相互作用的量子化学研究方法.化学进展,1999,11(3),247-253.
    [73] 孙得志,朱兰英,宋兴民.超分子化学、选择性分子间力和若干化学研究领域.聊城师院学报(自然科学版),1998,11(2),27-33.
    [74] 游长江.PSMA/PSAN共混物中MA与AN间的弱相互作用.高分子材料科学与工程,1992,3,50-55.
    [75] 宋仲容,王林.胆固醇分子间作用的理论探讨.重庆师专学报(综合版),1996,2,3-6.
    [76] Mary Stinecipher Campbell, Danielle Garcia, Deanne Idar. Effects of temperature and pressure on the glass transitions of plastic bonded explosives. Thermochimica Acta, 2000, 357-358, 89-95.
    
    
    [77] LIANG Yu-Gang, HONG Mao-Chun, CAO Rong, WENG Jia-Bao. Hydrothermal Synthesis and Structure Characterization of Compound Zn(Hpydc)_2(H_2O). Chinese J.Struct. Chem. 2001, 20(6), 455-458.
    [78] Stewart J J P. Optimization of parameters for semi-empirical methods. Ⅰ. Method. J. Comput. Chem., 1989, 10: 209-220.
    [79] THOMAS G.METZGER, DAVID, M.FERGUSON, WILLIAM A.GLAUSER. A Computational Analysis of Interaction Energies in Methane and Neopentane Dimer Systems. Jounal of Computational Chemistry, 1997, 18(1), 70-79.
    [80] 吴德印,任泽,刘玉明,田安民.1,3—二氟丙烷构象和电子结构的从头算和密度泛函理论计算.ACTA CHIMICA,1998,56,948-955.
    [81] 薛卫东,张广丰,朱正和,汪小琳,罗德礼,邹乐西,孙颖.CO_2二聚体分子弱结合作用的DFT计算.Acta Phys.-Chim. Sin., 2001,17(6);501-506.
    [82] 叶世勇,汪凌云,湛昌国.MINDO/3级别上的最大重迭对称性分子轨道.安徽师范大学学报(自然科学版),2002,25(3),249-253.
    [83] 田裴芳,李久滔,沈学英.N_2/Fe(100)系统的半经验模型势.VACUUM SCIENCE AND TECHNOLOGY(CHINA),1993,13(6),431-440.
    [84] 缪方明,宿秀梅,徐秀丽.β-环糊精包合物的量子化学计算.计算机与应用化学,2002,19(3),315-318.
    [85] 周平,欧阳植勋,孟庆安.超分子体系中次层相互作用对~(59)Co NMR谱的影响.ACTA PHYSICO-CHIMICA SINICA,1999,15(6),533-540.
    [86] 朱平平,扬海洋,何平笙.高分子间相互作用的特点及意义.高分子通报,2002,5,73-78.
    [87] SUN Dao-Feng, CAO Rong, LIANG Yu—Cang, HONG Mao—Chun, SU Wei-Ping. One-dimensional Chain Topology in [Ag(C_6H_6NCl)_2](ClO_4) Generated through Weak Interaction between Molecules. Chinese J. Struct. Chem., 2001, 20(3), 165-167.
    [88] 孟凡翠,步宇翔,刘成卜.吡啶-BH3相互作用复合物的理论研究.ACTA CHIMICA SINICA,2002,60(1),7-12.
    [89] 杨孔章,王娅娟,董玉林.MoO_3与NaY、丝光沸石的表面相互作用研究.ACTA PHYSICO CHIMICA SINICA,1990,6(3),290-297.
    [90] 严兵华,陆维敏,沈杭燕.腺嘌呤、脱氢核糖和脱氧腺苷与烷基胺的相互作用研究.浙江大学学报(理学版),2003,30(1),56-61.
    [91] 李金山,经福谦.硝基甲烷和氟化氢多体相互作用的从头算.爆轰波与冲击波.2002,3,104-109.
    [92] Jackson, C. L.; Wing, J. F. J. Am. Chem. Soc., 1887, 9, 354.
    [93] Benziger, T. M.; Rohwer, R. K.; Urizar, M. J. Los Alamos Scientific Laboratory, Private communication, 1973.
    
    
    [94] US Department of Energy, DOE M 440.1-1, 1998.
    [95] 中国工程物理研究院化工材料研究所;科技信息中心;技安处;钝感炸药译文集,1994。
    [96] Harmony, M. D.; Laurie, V. W.; Kuczkowski, R. L.; Schwendeman, R. H.; Ramsay, U. A.; Lovas, F. L.; Lafferty, W. J. and Maki, A. G. J. Phys. Chem. Ref. Data, 8(3), 619~721, 1979.
    [97] Cao, X. Z.; Song, T. Y.; Wang, X. Q. Inorganic Chemistry, High Education Press, Beijing, (in Chinese), 1987.
    [98] Gibbs, T. R.; popolato, A. LASL Explosive Property Data, University of California Press, 1980.
    [99] Cumming A S, Leiper G A, Robson E. Molecular Modeling as a Tool to Aid the Design of Polymer Bonded Explosives [A]. 24th International Annual Conference of ICT [C], Karlsruhe, Germany: 1993.
    [100] Sun, G.X. Polymer Mixed Explosives, National Defense Industry Press, Beijing, 1984(in Chinese).
    [101] Bailey, A., Bellerby, J.M., Kinloch, S.A. Philos. Trans. R. London. Ser. A, 1992, 339, 321.
    [102] Van Oss, C.J, Chaudhury, M. K., Good, R. J.Chem. Rev., 1988, 88, 927.
    [103] Xu, O.-L. Hanneng Cailiao, 1993, 1, 1 (in Chinese).
    [104] Malone John F, Murray Catherine M, Charlton Michael H.Docherty Robert, Lavery Aidan J. X-H…π (phenyl) interaction[J]. J. Chem. Soc. Faraday Trans 1997, 93(19), 3429-3436.
    [105] Walker P D, Mezey P G, J.Chem. Soc., 1993, 115, 12423-12430.
    [106] Mezey P G. J.Phys. Chem., 1995, 99, 4947-4954.
    [107] Lee T S, York D M, Yang W. J.Chem.Phys., 1996, 105(7), 2744-2750.
    [108] M. J. Frisch, G. W. Trucks, et al. Gaussian 98, Revision A.7, Ganssian, Inc., Pittsburgh PA, 1998.
    [109] James J. P. Stewart. Mopac6.0. Frank J. Seller Research Laboratory, 1990.
    [110] Bingham R C, Dewar M J S, Lo D H. Ground states of molecules. ⅩⅩⅤ. MINDO/3. An improved version of the MINDO semiempirieal SCF-MO method. J. Am. Chem. Soc., 1975, 97, 1285.
    [111] Dewar M J S, Thiel W. Grouhd states of molecules. 38. The MNDO method. Approximations and parameters. J. Am. Chem. Soc., 1977, 99, 4899.
    [112] Dewar M J S, Zoebisch E G, Healy E F, Stewart J J P. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985, 107, 3902-3909.
    [113] Stewart J J P. Optimization of parameters for semiempirical methods I. J. Comput. Chem., 1989, 10, 209.
    [114] Szalewicz K, Cole S, Kolos W, Bartlett R J. A theoretical study of the water dimer interaction. J. Chem. Phys., 1988, 89, 3662-3673.
    [115] Hobza P, Selzle H L, Schlag E W. Structure and properties of benzene-containing molecular cluster. Chem. Rev., 1994, 94, 1767-1785.
    [116] Allinger N L. Conformational Analysis. 130. MM_2. A Hydrocarbon Force Field Utilizing V_1 and V_2 Torsional Terms. J. Am. Chem. Soc., 1977, 99, 8127.
    
    
    [117] Burket U, Allinger N L. Molecular Mechanics, American Chemical Society, Washington D. C., 1980.
    [118] Fan Jian-Fen, Xia Qi-ying, Gong Xue-dong, Xiao He-ming, The influence of temperature on ethene diffusion in H[Al]ZSM-5 studied by molecular dynamics, Chem. Res. Chinese Univ., 2002, 18, 321-324.
    [119] Fan Jian-Fen, Xiao He Ming, Van De Graaf B., Wang Qiu Xia, Njo S.L., Xia Qi Ying, Influences of Bronsted acidic sites in H[Al]ZSM-5 on polarization and electronegativity of ethene studied by molecular dynamics, Chinese J. Chem., 2002, 20, 638-643.
    [120] Fan Jianfen, Xia Qiying, Gong Xuedong, Xiao Heming, Comparison of ethene diffusion characteristics in H[Al]ZSM-5 at 300K and 400K by molecular dynamics. Chinese J. Chem., 2001, 19, 251-256.
    [121] Hobza P., Sandorfy, C. J.Am.Chem.Soc., 1987, 109, 1302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700