用户名: 密码: 验证码:
超长圆锥管无芯模旋拉过程的有限元数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋拉联合成形工艺是有色金属特种型材——超长无缝锥管的无芯模高效加工工艺,具有生产效率高、设备投资小、加工成本低、材料利用率高等特点。发达国家自80年代以来,大力发展这一新工艺和成套设备,现这种特种型材,尤其是铝合金质的,作为高杆(电杆、灯杆、旗杆等)用材,在城市和道路建设中得到了广泛的应用。我国在该方面的研究还处于落后状态,至今还没有形成一条旋拉生产线投入生产,另一方面,我国城市化进程和道路建设正方兴未艾,对这种铝型材存在巨大的需求,因此开发旋拉联合成形设备并研究其机理具有重要的理论和现实意义。
     旋拉工艺的金属变形过程具备锻造、挤压、拉伸、弯曲、环轧和滚压等工艺的特点,变形区外部条件为无芯模、轴向拉拔力强化和旋轮接触加载,本文针对这些特点,运用弹塑性理论(Mises屈服准则、塑性流动定律、变分原理等),利用ANSYS软件建立了无芯模旋拉过程的有限元模型。
     无芯模旋拉过程是一个具有材料非线性、几何非线性和接触非线性的弹塑性变形过程,由此必须建立非线性控制方程,而非线性方程求解的关键是解决收敛性问题,因此如何设置影响收敛性的参数问题成为本文有限元模拟的难题。本文对程序经过反复的调试后,最终确定主要参数法向接触刚度因子FKN为模型收敛性主要影响因素,并确定FKN的最佳值,使无芯旋拉成形有限元模型收敛性问题得到了很好的解决。
     无芯模旋拉过程的有限元模拟结果深入地揭示了旋拉工艺的变形特点:
     1、旋拉加工具有典型的局部变形特点。
     2、整个工件沿轴向伸长。
     3、管坯在旋拉缩径的同时,壁厚有增厚的趋势。
     本文进行的可旋性实验,其结果与有限元模拟的理论结果基本相符,有力地证明了本有限元模型和程序的正确性,以及本文结论的可靠性。
Stretch Planishing and Drawing Combined Process (SPDCP) is a high efficient process technology of a non-mandril model for the extra long and non-seamed conical pipe-the nonferrous special type of profiled pipe. This technology has many characteristics such as high efficiency, small investment in equipments, lower machining cost and high efficient utilization of materials etc. Since 1980s, this new technology and its equipment have been developing in developed countries. Now, this special type of profiled pipe, especially the aluminium alloy profiled pipe has been used widely as high pole such as telegraph pole, lamp pole and flagpole etc in the city and road construction. On the one hand, the research on SPDCP in our country falls far behind developed countries, as yet there is even not a product line for Stretch Planishing and Drawing process. On the other hand, the urbanization progress and road construction are in the ascendant and there is a big demand for this alluminium alloy profiled pipe, so the deve
    lopment for Stretch Planishing and Drawing Combined equipment and the research on its mechanism has important theoretical and realistic significance,.
    In this paper, according to the characteristic of SPDCP, such as without mandril, the drawing force strengthened in the axial direction, contact loaded by rollers and so on , the theory of elastic-plastic(Mises yield criterion the flow theory of plasticity variation principle) and ANSYS have been applied to establish the FEM model of SPDCP without mandril.
    Stretch Planishing and Drawing Combined Process is a process of elastic-plastic deformation which has the following property: material non-linearity geometry non-linearity and contact non-linearity, therefore nonlinear equilibrium equations must be created Moreover, the key to solve non-linear equation is convergence, so the difficult problem of FEM simulation in this paper is how to set parameters which will influence convergence After repeating debug the ANSYS program, it is found that FKN is the main parameter which influences convergence, and finally the optimum value of FKN has been gained, which make the convergence problem of the FEM model of SPDCP without mandril has been well solved.
    The FEM simulation results of Stretch Planishing and Drawing Combined Process without mandril deeply disclosed the deformation characteristics of the SPDCP:
    1 There are typical local deformation characteristics in the SPDCP.
    
    
    2 The whole work-piece has elongated along the axial direction.
    3 The pipe's thickness is prone to increase while the pipe's diameters are
    dwindling away in the SPDCP.
    The results of the experiment involved in the paper basically accord with the FEM simulation ones, which pithily has proved that the FEM model and its program are correct and the conclusion drawn in the paper is credible
引文
[1] S. Stand For.Elizabeth Martin. Process Developmets Put Metal Forming in a Spin. METALLUGIA. 1987, (10): 454—455
    [2] 王成和,刘克璋等。旋压技术。机械工业出版社,1986:1—5
    [3] 陈适先,贾文铎等。强力旋压工艺与设备。国防工业出版社,1986:128—137
    [4] 龙游江,陈小琳。双级计算机控制录返式旋压机。机械与电子,1994,(5):19—21
    [5] 曹毅,王爱玲,彭彬彬。数控强力旋压工艺自动后置处理技术及应用。应用科技,2002,(4):23—24
    [6] 任建平,赵美虹。筒形件旋压工艺智能型CAD系统的研究。华北工学院学报,1997,(2):158—161
    [7] 纪琼莉,刘立民。数控双旋轮旋压机电液伺服系统设计与分析。机床电器,1996,(4):19—21
    [8] David Pdlit. Enhanced System Flexibility. Sheet Metal Indusries, 1991, 68(8): 28—30
    [9] Ken-ichi Kawai, Hiroadi Kudos. Rotary Forming of Tapered Internal Threads. Advanced Technology of Plasticity. 5th International Conference on Technology of Plasticity, Ohio, 1996. Beijing: Engineering Industry Press, 537—546
    [10] 李先禄等。第二届中国国际机床展览部分锻压设备简介:金属成形工艺。1992,(1):44—47
    [11] 李继贞,祝昕。带内齿工件的旋压成形。锻压技术,1997,(2):36—37
    [12] 黄汉辉。空调器用无缝内螺纹紫铜盆管的开发。上海有色金属,1996,17(1):17—24
    [13] 许建东。车辆阻尼器行星旋压封口工艺及设备。锻压机械,1997,(4):14—16
    [14] 肖作义。对轮旋压工艺。新技术新工艺,2000,(6):23—24
    [15] Masami Saito, Micro. Spinning Technology for Tubular Products. Advanced Technology of Plasticity 5th International Conference on Technology of Plasticity,Ohio., 1996. Beijing: Engineering Industry Press, 553—556
    [16] E.E.Michaelis. The Development of Sheet Metal Spinning as a Bulk Forming Operation. Sheet Metal Industries. 1992, 69(9): 10—12
    [17] 王振生,罗兵。大口径薄壁无缝铝管变薄旋压工艺。金属成形工艺,1996,(1):1—4
    [18] 候红亮,任学平。超高强钢大型卷焊毛坯圆筒旋压工艺研究。锻压机械,1999,(6):30—31
    [19] 王忠清。钣制旋压皮带轮在汽车行业的发展及其应用。金属成形工艺,1998,16(5):47—49
    
    
    [20] 陈适先。我国旋压技术的新进展与发展设想。中国机械工程学会锻压学会第四届学术年会论文集,1987,(6):43—46
    [21] 黄钿藻。金属的旋压技术。上海金属:有色分册,1990,11(5):51—54,58
    [22] 王振生,罗兵。大口径薄壁无缝铝管变薄旋压工艺。金属成形工艺,1996,14(1):1—4
    [23] 李尊堂。旋压机示教/录返控制系统的研究。航空制造工程,1993,(9):3—5
    [24] 程秋谋,康达昌,冯庆国。新一代录返旋压机控制系统的设计与研究。机械工程师,1995,(3),18—19
    [25] 叶山益次郎。旋压加工原理及工艺讲义。有色金属研究总院译。国防工业出版社,1983:100—150
    [26] S.Kobayashi, E.G.Thomson. Theory of Spin Forging. Anneals of the CIRP, 1962, 10(2): 114—123
    [27] S. Kalpakcioglu. Maximum Reduction in Power Spinning in of Tubes. Journal of Engineering for Industry, 1964, (2): 49—54
    [28] R. W. Clough. The Finite Element in Plane Stress Analysis. Proc. 2nd ASCE Conf. On Electronic Computation, 1960:345
    [29] M.Hayama and Hiroaki Kudo. Analysis of Diametrical Growth and Working Forces. Bulletin of the JSME. 1979, 22(167): 769—775
    [30] O.C.Zienkiewz. The Finite Element Method.3rd ed.McGraw-Hill Book company. New York, 1977
    [36] 赵经文,王宏玉。圆柱壳杂交应力元。哈尔滨工业大学学报。1980,4:15—19
    [37] P.V.Marcal and I.P.King. Elastic-Plastic Analysis of Two-Dimensonal Stress System by the Finite Element Method. Int.J.Sci., 1967, (9): 143-155
    [38] Y.Yamada, N.Yoshimura, T.Sakura. Plastic Stress-Strain Matrix and Its Application for the Solution of Elastic-Plastic Problems by the Finite Element Method. Int.J.Mech.Sci., 1967, (10): 343-354
    [39] C.C.Lee, S.Kobayashi. New Solution to Rigid-Plastic Deformation Problems Using a Matrix Method.Trans. ASME, J.Engr.Ind., 1973, (95): 865-877
    [40] O.C.Zienkiewicz, P.N.Gogbole. A Penalty Function Approach to Problems of Plastic Flow of Metals with Large Sruface Deformations. J.Strain Analysis, 1975, (10): 180-196
    [41] K.Osakada, J.Nakano, K.Mori. Finite Element Method for Rigid-Plastic Analysis of Metal Forming. Int. J.Mech.Sci., 1982, (24): 459-562
    [42] S.I.Oh. Finite Element Analysis of Metal Forming Process with Arbitrarily Shaped Dies. Int.J.Mech.Sci., 1982, (24): 479-488
    [43 C.C.Chen, S.I.Oh, S.Kobayashi. Ductile Fracture in Axiymmetric Extrusion and Drawing. Trans.ASME, J.Engr.Ind., 1979, (101): 23-28
    [44] K.Mori, K.Osakada, M.Fukuda. Simulation of Severe Plastic Deformation by Finite Element Method with Spatially Fixed Element. Int. J.Mech.Sci., 1983, (25): 775-762
    
    
    [45] C.C.Chen and S.Kobayashi. Application of Numerical Method to Forming Process, ASME, AMD, 1979, 1(28): 163-166
    [46] M.C.Tang and S.Kobayashi. An Investigation of the Sheet Nosing Process by the Finite Element Method. Trans., ASME, J.Eng.Ind., 1982, (104): 312-315
    [47] G.J.Li and S.Kobayashi. Rigid-Plastic Finite Elment Analysis of Plane Strain Rolling. Trans., ASME, J.Eng.Ind. , 1982, (104): 55-58
    [48] S.Kobayashi. Numerical Method in Industry Forming Process, Edited by J.F.T.Pittman et al.,Pineridge Pres, Swansea, U.K., 1982:50-53
    [49] 王圣平。筒形件变薄旋压力学的研究。哈尔滨工业大学硕士论文。1985,113—117
    [50] 周照耀。筒形件强旋刚塑性有限元二维模拟及三维初步分析。哈尔滨工业大学博士学位论文,1994,73—108
    [51] 赵宪明,吕炎,薛克敏。筒形件强旋三维弹塑性有限元分析。塑性工程学报,1995,2(4):46—54
    [52] 李克智,吕炎。筒形件正旋时位移分布规律的研究。塑性工程学报,1996,3(4):61—63
    [53] 周照耀,阮锋,吕炎,王真,薛克敏。筒形件反旋的三维刚塑性有限元分析。锻压技术,1997,(1):29—33
    [54] 李克智,李贺军,薛克敏,吕炎。筒形件反旋时工艺参数残余应力分布的影响。锻压技术,1997,(4):23—26
    [55] 刘英伟,吕炎,王成录。一种筒形件强旋三维有限元力学模型的提出。塑性工程学报,1998,5(3):51—56
    [56] 赵宪明,吴迪,吕炎。筒形件强力旋压变形机理的有限元分析。塑性工程学报,1998,5(3):61—65
    [57] 许沂,李萍,单德彬,吕炎。筒形件正旋旋压力有限元计算及分析。锻压机械,1999,(3):11—13
    [58] 张涛,李文平,李伟民,肖作义。对轮旋压金属成形的刚塑性有限元分析。塑性工程学报,1999,6(4):58—61
    [59] 许沂,单德彬,吕炎。筒形件强力旋压接触区轮廓的数值计算方法。金属成形工艺,1999,17(2):10—11
    [60] 卫原平,王轶为。工艺参数对筒形件强力旋压过程的影响。模具技术,2000,(4):12—16
    [61] 赵宪明,吴迪,吕炎,薛克敏。筒形件正旋旋压力及位移分布规律的有限元分析。塑性工程学报,2000,7(4):56—59
    [62] 赵宪明,吴迪,吕炎,薛克敏。筒形件正强旋旋压力分布规律的有限元分析。哈尔滨工业大学学报,2000,32(4):120—122

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700