用户名: 密码: 验证码:
枯草杆菌生物素操纵子基因的克隆与功能表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以大肠杆菌(E. coli)克隆载体pUC19为模板,分别用两对引物扩增了含有复制起始序列(ori)和复制蛋白基因(rep)的700bp 片段,以枯草芽孢杆菌(B.subtilis)质粒载体pGDV1为基本骨架,构建了三个带有氯霉素抗性基因的大肠杆菌-枯草芽孢杆菌小型穿梭载体pGDVM、pGDVM1和pGDVM2。经大肠杆菌-枯草杆菌反复穿梭实验和细菌连续培养分析检测,结果证明:含大肠杆菌pUC19复制起始区(ori)和复制起始蛋白基因(rep)的700bp克隆片段在大肠杆菌中具有完全的复制功能;构建的三个质粒载体在大肠杆菌和枯草杆菌中能稳定地遗传。这三个穿梭质粒载体分子较小,仅3kb左右;具有较高的拷贝数(在枯草杆菌中约150-200拷贝数),带有多个不同的克隆位点,方便插入目标基因,并且带有氯霉素抗性基因,可以为受体菌提供理想的抗性筛选标记。该系列载体可以作为枯草杆菌理想的基因工程菌构建骨架。
    本研究成功地克隆了枯草杆菌生物素操纵子基因bioB、bioW 和基因簇bioWAFDB片段;以大肠杆菌表达质粒载体pEXT20为骨架,分别构建了bioW、bioB和bioWAFDB诱导型表达载体pEXT20bioW、pEXT20bioB和pEXT20bioWAFDB,可以通过IPTG诱导,在大肠杆菌中进行表达。通过它们与大肠杆菌生物素生物合成基因系列bioF、bioB、bioC、bioD和bioA缺陷株R874、R875、R876、R877和R879的遗传互补实验,证明:枯草杆菌生物素基因bioA、bioB、bioD和 bioF在大肠杆菌中功能正常; bioW基因(编码庚二酰CoA合成酶)的表达载体对大肠杆菌缺陷株没有遗传互补作用, 但是bioW基因编码的庚二酰CoA合成酶在大肠杆菌中有催化活性,可以催化外源的庚二酸合成庚二酰CoA,为生物素合成途径提供底物。经过IPTG不同水平的诱导表达实验,发现:枯草杆菌生物素基因bioWAFDB的过量表达对受体菌的生长有严重抑制作用,该抑制作用主要是由bioW引起,并且不能通过添加二氨基庚二酸而解除。枯草杆菌bioB基因诱导表达产物未对大肠杆菌的生长造成抑制,实验结果为枯草杆菌生物素基因工程菌的构建及生物素发酵生产提供了有价值的理论依据。
Two DNA fragments, which are about 700bps and contain ori and rep of E.coli, were cloned from pUC19 using two pairs of primers respectively. Three E.coli-B.subtilis shuttle vectors pGDVM,pGDVM1 and pGDVM2whith chloramphenicol resistance, were then constructed with the framework pGDV1 , a plasmid come from B.subtilis strain 1E60. It indicates that the cloned 700 bp DNA fragments contains ori and rep of E.coli have a complete ability of replication, and the three shuttle vectors can inherit and clone steadily via continuous culture and times of shuttle experiments between E. coli and B. subtilis, This series of shuttle vectors based on plasmid pGDV1 , are numerous to 150-200 copies in B. subtilis . The length of vectors are only about 3kb ,they contain multiple clone site and chloramphenicol resistance gene,can act as ideal framework for B.subtis genetic engineering.
    Biotin operon genes bioB,bioW and gene cluster bioWAFDB in B. subtilis have been cloned and inserted into the downstream of Ptac promoter of E.coli expression vector pEXT20, and yield induced expression vectors —pEXT20bioW, pEXT20bioB and pEXT20bioWAFDB . Five E. coli mutant strains, R874,R875,R876,R877 and R879 with defect of bioF, bioB, bioC,bioD and bioA respectively, were used for genetic complement analysis of biotin genes. The results show that four biotin biosynthetic genes bioF, bioB, bioD and bioA in B. subtilis can express in E. coli, but the expression vector of bioW can not competent the bioC gene defect Without supplement of PADK. Inducing of IPTG under high level, the growth of host strains of pEXT20bioWAFD is inhibited. The growth inhibition results from the bioW gene but not from the overexpression of bioB.
引文
C.W.迪芬巴赫等著. 黄培堂等译. PCR技术实验指南. 北京:科学出版社,2000
    曹先维,张鹤龄.生物素标记核酸探针的分子杂交技术及其应用. 病毒杂志,1991,6(1):1-14
    常文环. 动物生物素营养研究进展. 畜禽业, 2003(4): 12-13
    蔡元丽, 周生飞等. 枯草杆菌发酵产物对肉仔鸡饲料转化率、类脂沉积和产氨量的影响. 山东家禽, 2001(6): 33-36
    陈芬儿 彭作中. d-生物素的不对称全合成研究. 药学学报, 1999,34(11): 822-827
    陈芬儿, 凌秀红等. d-生物素的不对称全合成研究(Ⅱ). 高等学校化学学报. 2001,22(7): 1141-1146
    陈芬儿, 傅晗等. d-生物素的不对称全合成研究(Ⅴ). 高等学校化学学报, 2002,23(6): 1060-1064
    陈乃用. 枯草芽孢杆菌中质粒的稳定性问题. 微生物学通报,1993,20(4):226—232
    陈中义, 陈志谊等.杀虫防病基因工程枯草芽孢杆菌的构建.生物工程学报, 1999,15(2):215-220
    段智勇,吴跃明,刘建新. 生物素对高产奶牛的作用. 饲料研究,2003,(2):19-21
    F.奥斯伯,R.布伦特,R.E.金斯顿等. 精编分子生物学实验指南. 北京:科学出版社,1999
    冯定远, 曾小玲. 猪的生物素营养研究进展. 国外畜牧学:猪与禽, 1998(6): 6-10
    傅晗. d-生物素的全合成及其相关反应的研究. 复旦大学硕士学位论文,上海,2001
    高东旗, 刘育京. 新洁尔灭等四因子复合杀芽胞方法的研究. 中国消毒学杂志, 1995,12(2): 71-75
    郭兴华,熊占. 枯草杜菌-大肠杆菌多功能穿梭载体的构建.生物工程学报, 1991,7(3):224-229
    韩艳淑, 张志珍. 活性络碘对枯草杆菌黑色变种芽胞的杀灭作用. 中国消毒学杂志, 1995,12(4): 239-240
    胡芯浩, 杨闰英. 大肠杆菌-链霉菌穿梭载体的构建及应用.生物工程学报, 1998,14(1):6-12
    J. 萨姆布鲁克等著. 黄培堂等译. 分子克隆实验指南(上、下)(第三版).北京:科学出版社,2002
    杰弗里. 佐贝主编. 曹凯鸣等译. 生物化学. 上海:复旦大学出版社,1989
    孔建, 王文夕.枯草芽孢杆菌B-903菌株抗菌物质的研究. 微生物学报, 1992,32(6): 445-449
    李克明,王增力. 添加生物素对产蛋鸡的效果. 饲料研究,1993,(3):2-4
    李宁, 蔡莉,陈永福. 枯草芽孢杆菌质粒pGB38复制子的分离及其稳定性研究. 自然科学进展-国家重点实验室通讯, 1995,5(5): 627-632
    李文清, 王红革. 猪生长激素cDNA在芽孢杆菌中的表达. 生物化学杂志, 1993,9(4): 434-440
    李文清, 罗进贤,王红革. 分泌载体pUS186的构建及地衣杆菌α-淀粉酶基因在枯草杆菌中的表达和分泌. 遗传学报, 1994,21(4): 330-336
    李心治,章银梅等. 抗氧化型枯草杆菌碱性蛋白酶高产工程菌的构建及其酶学特性. 高技术通讯, 2000,10(10):13-18
    李育阳主编. 基因表达技术. 北京:科学出版社,2001
    梁思宇, 陆兆新等. 营养条件对枯草杆菌生产血纤维蛋白溶解酶的影响. 工业微生物, 2002,32(3): 36-39
    梁新梅等. d-生物素代替玉米浆发酵生产谷氨酸的研究.生物技术,1996,(2):30-34
    林峰. 枯草杆菌生物素操纵子基因的克隆、序列改造及功能表达研究. 西北农林科技大学博士学位论文,杨凌,2003
    刘白玲, 何先祺. 枯草杆菌的分子生物学研究. 成都科技大学学报, 1993(5): 34-42
    刘白玲, 张义正. 枯草杆菌中性蛋白酶基因在大肠杆菌中的表达. 生物工程学报, 1997,13(3):
    
    
    304-308
    刘成君, 黄庆等. 大肠杆菌-枯草杆菌穿梭质粒载体pSUGV4的构建. 四川大学学报:自科版, 2001,38(2):243-246
    刘怀田, 李荣芬. 紫外线与乙醇协同对枯草杆菌黑色变种芽胞杀灭机理的初步研究. 中国消毒学杂志, 1994,11(4): 197-205
    刘怀田, 丁兰英. 微波与柠檬协同杀菌作用的研究. 中国消毒学杂志, 1995,12(4): 241-242
    刘兆域, 宋后燕. 纳豆激酶基因的克隆及其在枯草杆菌中的表达.生物化学与生物物理学报,2002,34(3): 338-340
    马晓雯, 黄永秀. 枯草杆菌表达载体的构建及乙肝病毒e基因的克隆与表达. 高技术通讯, 1992,2(5): 14-16
    潘学峰,章银梅.枯草杆菌Ki-2-132高表达遗传工程系统的研究.高技术通讯, 1996,6(6): 46-51
    彭清忠, 张惟材等. 枯草杆菌表达系统的研究进展. 生物技术通讯, 2001,12(3): 220-225
    平文祥, 周东坡. 枯草杆菌(B.subtilis)原生质体融合的方法学研究. 齐齐哈尔师范学院学报:自科版, 1989(3): 58-62
    沈礼, 蔡玲斐. 4种常见细菌在不同压力、不同时间下高压蒸汽灭菌效果的比较. 浙江省医学科学院学报, 2003,14(2): 20-21
    沈萍主编. 微生物学. 北京:高等教育出版社,2002
    孙乃恩等. 分子遗传学. 南京大学出版社. 1995
    孙国富.枯草杆菌(Bacillus subtilis)稳定的基因表达系统. 生物工程进展, 1991,11(1): 11-16
    汤懋竑,童克忠,陈慎等. 枯草杆菌(Bacillus subtilis )转化的研究 I. 受体菌株的筛选. 微生物学报,1964,10:189-194
    王凡强, 马美荣. 枯草杆菌蛋白酶基因工程的研究进展. 生物工程进展, 2000,20(2): 41-44
    王红革,李文清,徐柏年等. 地衣芽孢杆菌α淀粉酶基因在枯草杆菌中的诱导表达. 微生物学报,1997,37:101-106
    王镜岩,朱圣庚,徐长法主编. 生物化学(第三版). 北京:高等教育出版社,2002
    王丽影,吴自荣. 基因工程枯草杆菌生产中性蛋白酶的研究. 华东理工大学学报, 1995,21(6): 691-695
    王培之,王贤舜,丁丽俐. 用遗传工程的方法构建一个分泌型高表达的枯草杆菌碱性蛋白酶E(Subtilisin E)的枯草杆菌质粒-宿主系统. 生物化学杂志.1993,9(2).-208-212
    王胜林.饲料添加生物素和维生素E能改善猪肉品质. 兽药与饲料添加剂,2000,5(5):28
    王太星. 三种方法检测消毒剂杀菌效果的结果比较. 中国消毒学杂志, 2002,19(3): 162-167
    王锡录, 许继增. 用静电高压法杀灭枯草杆菌. 东北师大学报, 1993(4): 40-44
    王英青,张庆荣. 生物素及其生物合成研究进展. 天津药学, 1995,7(3): 68-70
    吴格天. 皱纹盘鲍(HaliotisdiscushannaiIno.)水溶性维生素营养生理的基础研究. 青岛海洋大学博士学位论文,青岛,2001
    吴乃虎. 基因工程原理(上、下)(第二版). 北京:科学出版社,2002
    吴青,罗进贤等.枯草杆菌诱导型高效表达-分泌系统的构建. 自然科学进展, 2001,11(1):40-46
    谢荣珍. 二氧化氯消毒剂灭细菌芽胞效果观察. 实用预防医学, 2002,9(4): 416-416
    许翠蓬, 殷斌烈. 生物素的工业全合成. 天津化工, 2003,17(4): 34-36
    徐志南, 陈秀奇, 陈新爱, 岑沛霖. 重组枯草芽孢杆菌生产青霉素G酰化酶发酵条件的研究. 高校化学工程学报, 2003,17(3): 266-271
    杨华明,丁兰英,蒋莉. 医用微波灭菌器对枯草杆菌黑色变种芽胞杀灭效果影响因素的研究. 中国消毒学杂志.1994,11(1).-1-4
    杨闰英,胡志浩等. 大肠杆菌-链霉菌穿梭载体的构建及应用. 生物工程学报,1998,14(1):
    
    
    6-12
    杨晟, 袁中一. 巨大芽孢杆菌青霉素G酰化酶基因在枯草杆菌中的高表达. 生物化学与生物物理学报, 1999,31(5): 601-603
    杨树青, 江行娟. pUB110 DNA分子的紧密型结构.复旦学报:自科版, 1989,28(4): 402-407
    余学政, 吴柏桦. 苏云金杆菌蜡螟变种晶体蛋白基因在枯草杆菌中的克隆及表达. 生物工程学报, 1990,6(1): 69-72
    郁枫. 动物生物化学. 西安:西安地图出版社,1999
    袁清. α-淀粉酶产生菌的选育:枯草杆菌细胞及其原生质体诱变育的研究. 杭州食品科技, 1994(2): 6-10
    曾秉基 陈永福. 构建表达载栽体提高枯草杆菌β-葡聚糖酶表达量. 北京农业大学学报, 1990,16(4): 357-362
    詹万初. 生物素全合成——相关中间体制备及合成工艺研究. 北京理工大学硕士学位论文, 北京, 2002
    张培德,吴蓉,陈石根. 溶葡球菌酶5升罐发酵研究. 工业微生物,1997,27:13-16
    张巍, 童克忠. 枯草杆菌核糖体蛋白质突变对碱性蛋白酶基因表达的影响. 遗传学报, 1993,20(4): 362-373
    张伟,周桂莲. 母猪的维生素营养. 养猪,2001,(1):5-8
    张文福, 刘育京. 过氧化氢对细菌芽胞杀灭的研究. 中国消毒学杂志, 1993,10(1): 1-6
    张逸伟, 曾汉维. 生物素合成的进展. 华南理工大学学报:自科版, 2001,29(2): 58-65
    章银梅 李心治. 血红蛋白基因在枯草芽孢杆菌中的表达及其作用的研究.遗传学报, 2000,27(2):183-188
    赵淑梅, 尤敏等. 强力杀菌消毒剂杀灭微生物效果的试验观察. 潍坊医学院学报, 2002,24(4): 254-255
    周桂莲. 生物素在畜禽生产中的作用. 中国饲料.2000(6): 14-15
    周天鸿, 李月琴. 枯草杆菌电击法转化. 暨南大学学报:自科与医学版, 1992,13(1): 65-69
    周天鸿等. 三种新的穿梭质粒pCC10、pCCT7和pST16的构建和性质研究. 暨南大学学报(自然科学版),1993,1:67—72
    周智明, 杨红文. 生物素的全合成. 化学进展, 1998,10(3): 319-326
    疯牛病恐怖引发生物素开发热. 化工中间体.2003(12).-44-45
    Abbott J, Becket T D. Cooperative binding of the Escherichia coli repressor of biotin biosynthesis to the biotin operator sequence. Biochemistry, 1993, 32:9649-9656
    Akatsuka H, Kawai E, Sakurai N, et al. The Serratia marcescens bioH gene encodes an esterase. Gene, 2003, 302(1): 185-192
    Andrup L, Rgensen O J, Wilcks A. Mobilization of “Nonmobilizable” Plasmids by the Aggregation -Mediated Conjugation System of Bacillus thuringiensis. Plamid, 1996, 36: 75–85
    Anthony J, et al. The Escherichia coli biotin biosynthetic ensyme sequence predicted from the nucleotide sequence of the bio operon. J. Biol. Chem., 1988, 263(36):19577-19585
    Anthony O, John A, et al. The regulator region of the biotin operon in Escherichia coli. Nature, 1978, 276:689-694
    Arvanitis N, Pappas K M, Kolios G, et al. Characterization and replication properties of the Zymomonas mobilis ATCC 10988 plasmids pZMO1 and pZMO2. Plasmid, 2000, 44:127-137
    Azeddoug H, Hubert J, Reysset G. Stable inheritance of shuttle vectors based on plasmid pIM13 in a mutant strain of Clostridinm acetobutylicum. J. General Microbiol., 138:1371-1378
    Baldet P, Alban C, Douce R. Biotin synthesis in higher plants: purification and characterization of
    
    
    bioB gene product equivalent from Arabidopsis thaliana overexpressed in Escherichia coli and its subcellular localization in pea leaf cells. FEBS Letters, 1997, 419(2-3): 206-210
    Bernhard K, Schrmpf H, Goebel W. Bacteriocin and antibiotic resistance plasmmids in Bacillus cereus and Bacillus subtilis. J. Bacteriol, 1978, 133:897-903
    Bower S, Perkins J, Yocum R R, et al. Cloning and characterization of the Bacillus subtilis birA gene encoding a repressor of the biotin operon. J. Bacteriol., 1995,177(9):2572-2575
    Bower S, et al. Cloning, sequencing,and characterization of the Bacillus subtilis biotin biosynthetic operon. J. Bacteriol., 1996,178(14):4122-4130
    Bron S, Bolhuis A, Tjalsma H, et al. Protein secretion and possible roles for multiple signal peptidases for precursor processing in Bacilli. J. Biotechnol., 1998,64:3-13
    Brückner R. A series of shuttle vectors for Bacillus subtilis and Escherichia coli. Gene, 1992, 122:187-192
    Castledine AJ, Cho C Y, Silnger S J, et al. Influence of dietary biotin level on growth, metabolism and pathology of rainbow trout. J. Nutr. , 1978, 108:698-711
    Chao Y P, Wen C S, Chiang C J, et al. Construction of the expression vector based on the growth phase- and growth rate-dependent rmf promoter: use of cell growth rate to control the expression of cloned genes in Escherichia coli. Biotechnol. Letters, 2001, 23:5-11
    Chawla M, Das G, Sujoy K. Transposition-induced structural instability of Escherichia coli- Mycobacteria shuttle vectors. Plasmid, 1999, 41(2): 135-140
    Cleary P, Campbell A. Deletions and complementation analysis of the biotin gene cluster of Escherichia coli. J. Bacteriol., 1972, 112:830-839
    Cordes C, Meima R, Twiest B, et al. The expression of a plasmid-specified exported protein causes structural plasmid instability in Bacillus subtilis. J. Bacteriol., 1996, 178(17):5235-5242
    Cosper M M, Jameson G N L, Eidsness M K, et al. Recombinant Escherichia coli biotin synthase is a [2Fe-2S]2+ protein in whole cells. FEBS Letters , 2002, 529(2-3): 332-336
    Coyne V E, Usdin K, Kirby R. The effect of inhibitors of DNA repair on the genetic instability of Streptomyces cattleya. J. Gener. Microbol., 1984, 130:887-892
    Cronan J E, Jr. The E. coli biotin operon: transcriptional repression by an essential protein modification enzyme. Cell, 1989, 58:427-429
    Dators V, Coppee J Y, Colsen C, et al. Genetic analysis and overexpression of lipolytic activity in Bacillus subtilis. Appl. Enviro. Microbiol., 1994, 60:1670-1673
    del Solar G, Espinosa M. Plasmid copy numbe control: an ever-growing story. Mol. Microbiol., 2000, 37(3):492-500
    Doekel S, Eppelmann K, Marahiel M A. Heterologous expression of nonribosomal peptide synthetases in B. subtilis: construction of a bi-functional B. subtilis/E. coli shuttle vector system. FEMS Microbiology Letters , 2002, 216(2): 185-191
    Dupuis L, Campeau E, Leclerc D, et al. Mechanism of biotin responsiveness in biotin- responsive multiple carboxylase Deficiency. Mol. Gen. and Metabolism, 1999, 66(2): 80-90
    Ehrlich SD, Bierne H, Vilette D, et al. Mechanisms of illegitimate recombination. Gene, 1993, 135:161-166
    Fujisawa A, Abe T, Ohsawa I, et al. Bioconversion of dethiobiotin into biotin by resting cell and protoplasts of Bacillus sphaericus bioB transforment. Biosci. Biotech. Biochem., 1993, 57(5):740-744
    Gallizia A, de Lalla C, Nardone E, et. al. Production of a soluble and functional recombinant streptavidin in Escherichia coli. Protein Expression and Purification,1998, 14(2): 192-196
    
    Gloeckler R, Ohsawa I, Speck D, et al. Cloning and characterization of the Bacillus spharicus genes controlling the bioconversion of pimelate into dethobiotin. Gene, 1990, 87:63-70
    Gryczan T J, Dubnau D. Construction and propties of chimeric plasmids in Bacillus subtilis. Proc. Natl. Acad. Sci. USA. 1978, 75:1428-1432
    Hahn J, Dubnau D. Analysis of plasmid deletional instability in Bacillus subtilis. J Bacteriol, 1985, 162 (3): 1014–1023
    Harwood C R. Bacillus subtilis and its relatives: molecular biological and industrial workhorses. Trends Biotechnol, 1992, 10(7):247-56.
    Heller A J, Stanley C, Shaia W T, et. al. Localization of biotinidase in the brain: implications for its role in hearing loss in biotinidase deficiency. Hearing Research, 2002,173(1-2):. 62-68
    Haima P, Bron S, Venema G. The effect of restriction on shotgun cloning and plasmid stability in Bacillus subtilis Marburg. Mol. Gen. Genet. , 1987, 209:335-342.
    Howard P K, Janet S, Anthony J. O. Nucleotide sequence of the birA gene encoding the biotin operon repressor and biotin holoenzyme synthetase functions of Escherichia coli. Gene, 1985, 35:321-331
    Howl J. Fluorescent and biotinylated probes for B2 bradykinin receptors: Agonists and antagonists. Peptides, 1999, 20(4): 515-518
    Ifuku O, Haze shin-ichirou, Kishimoto J, et al. Sequencing analysis of mutation point in the biotin operon of biotin-overproducing Escherichia coli mutants. Biosci. Biotech. Biochem., 1993, 57(5):760-765
    Ifuku O, Koga N, Kishimoto J, et al. Origin of carbon atoms of biotin: 14C-NMR studies on biotin biosynthesis in Escherichia coli. Eur. J. Biochem., 1994, 220:585-591
    Ifuku O, Koga N, Haze shin-ichirou, et al. Molecular analysis of growth inhibition caused by overexpression of the biotin operon in Escherichia coli. Biosci. Biotech. Biochem., 1995, 59(2):184-189
    Ishiwa H, Tsuchida N. New shuttle vectors for Escherichia coli and Bacillus subtilis. I.Construction and characterization of plasmid pHY460 with twelve unique cloning sites. Gene, 1984, 32:129-134
    Izumi Y, Yoshiaki K, Kenji I, et al. Characterization of biotin biosynthetic enzymes of Bacillus sphaericus: a dethiobiotin producing bacterium. Agric. Biol. Chem., 1981, 45(9):1983-1989
    Jitrapakdee S, Walker M E, Wallace John C. Functional Expression, Purification, and Characterization of Recombinant Human Pyruvate Carboxylase. Biochemical and Biophysical Research Communications, 1999, 266(2): 512-517
    Joseph P, Fantino J R, Herbaud M L, et al. Rapid orientated cloning in a shuttle vector allowing modulated gene expression in Bacillus subtilis. FEMS Microbiology Letters , 2001, 205(1): 91-97
    Keggins K M, Lovett P S, Duvall E J. Molecular cloning of genetically active fragments of Bacillus DNA in Bacillus subtilis and properties of the vector plasmid pUB110. Natl. Acad. Sci. U.S.A., 1978, 75:1423-1427
    Kimura E, Abe C, Kawahara Y, Nakamatsu T, et al. A dtsR Gene-disrupted mutant of brevibacterium lactofermentum requires fatty acids for growth and efficiently produces L-Glutamate in the presence of an excess of biotin. Biochemical and Biophysical Research Communications, 1997, 234(1): 157-161
    Kiyasu Tatsuya, Akira A, Yoshie N, et al. Contribution of cysteine desulfurase (Nifs protein) to the biotin synthase reaction of Escherichia coli. J. Bacteriol., 2000, 182(10):2879-2885
    
    Kiyasu Tatsuya, Nagahashi Yoshie Hoshino, Tatsuo. Cloning and characterization of biotin biosynthetic genes of Kurthia sp. Gene, 2001, 265(1-2): 103-113
    Knowles J R. The mechanism of biotin-dependent enzymes. Annu Rev Biochem., 1989, 58:195-221.
    Kok J, van der Vossen J M B M , Vnema G. Construction of plasmid clong vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl. Environ. Microbiol., 1984, 48(4):726-731
    Kolot M N, Kashlev M V, Khmet I A. Stability of pBR322 plasmid as affected by the promoter region of the tetracycline-resistantance gene. Gene, 1989,75:335-339
    Kunst, F., Ogasawara, N., Moszeer, I., et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature, 1997, 390(20):249-256
    Kupsch J, Alonso J C, Trautner T A. Analysis of structural and biological parametes affecting plasmid deletion formation in Bacillus subtilis. Mol. Gen. Genet., 1989, 218:402-408
    Laios E, Ioannou Pinelopi C, Christopoulos. Theodore K. Novel Hybridization Assay Configurations Based on In Vitro Expression of DNA Reporter Molecules. Clinical Biochemistry, 1998, 31(3): 151-158
    Leonhardt H, Alonso J C. Parameters affecting plasmid stability in Bacillus subtilis. Gene, 1991, 103:107-111
    Lepesant-Kejzlarova J, Lepesant JA, Walle J et al. Revision of the linkage map of Bacillus subtilis168: indications for circularity of the chromosome. J. Bacteriol., 1975, 121(3):823-834
    Levy-Schil Sophie, Laurent Debussche, Sylvie R, et al. Biotin biosynthetic pathway in recombinant strains of Escherichia coli overexpressing bio genes:evidence for a limiting step upstream from KAPA. Appl. Microbiol. Biotechnol., 1993, 38:755-762
    Lovell R T, Buston J C, 1984. Biotin supplementation of practical diets for channel catfish. J. Nutr. 114, 1092-1096
    Mahler I,Harlyn O H. Transformation of Escherichia coli and Bacillus subtilis with a hybrid plasmid molecule. J. Bacteriol., 1977, 131(1):374-377
    Masuda M,Takahashi K, Sakurai N T. Further improvement of D-biotin production by a recombinant strain of Serratia marcescens. Process Biochemistry, 1995, 30(6): 553-562
    McKenzie T, Hoshino T, Tanaka T, et al. The nucleotide sequence of pUB110: some salient features in relation to replication and its regulation. Plasmid, 1986, 15:93-103
    Meima R., Haijema B J, Venma G, et al. Overproduction of the ATP-dependent nuclease AddAB improves the structural stability of a model plasmid system in Bacillus subtilis. Mol. Gen. Genet., 1995, 248:391-398
    Meima R, Venma G, Bron S. A positive selection vector for the analysis of structural plasmid instability in Bacillus subtilis. Plasmid, 1996, 35:14-30
    Meima R, Haan G J, Venema G, et al. Sequence specificity of illegitimate plasmid recombination in Bacilus subtilis: possible recognition sites for DNA topoisomerase. Nucleic Acids Research, 1998, 26(10):2366-2373
    Messing J. New M13 vectors for cloning. Methods in Enzymology, 1983, 101:20–78.
    Nasri M, Berry F, Sayadi S. Stability fluctution of plasmid-bearing cells:immobilization effects. J. Gen. Microbiol., 1988, 134:2325-2331
    Ostroff G R, Pène J J. Molecular cloning with bifunctional plasmid vectors in Bacillus subtilis. Mol. Gen. Genet., 1984, 193:306-311
    
    Pacheco-Alvarez D, Solórzano-Vargas R Sergio, Del Río A L. Biotin in metabolism and its relationship to human disease. Arch. Medic. Res., 2002, 439-447
    Palva I. Molecular cloning of α-amylase gene from Bacillus amyloliqefaciens and its expression in Bacillus subtilis. Gene, 1982, 19:81-87
    Patton D A, Amy L. S, David W. M, et al. An embryo-defective mutant of arabidopsis disrupted in the final step of biotin synthesis. Plant Physiol., 1998, 116:935-946
    Peeters B P H, de Boer J H, Bron S, et al. Structural plasmid indtability in Bacillus subtilis: effect of direct and inverted repeats. Mol. Gen. Genet., 1988, 212:450-458
    Peijnenburg Ad A C M, Bron S, Venema G. Structural plasmid instability in recombination- and repair-deficient strains of Bacillus subtilis. Plasmid, 1987, 17:167-170
    Peijnenburg Ad A C M, Bron S, Venema G. Plasmid deletion formation in Bacillus subtilis. Plasmid, 1988, 20:23-32
    Peijnenburg Ad A C M, Breed P V, Bron S, et al. Plasmid deletion formation in recE4 and addB72 mutants of Bacillus subtilis. Plasmid, 1989, 21:205-215
    Perkins J B, Bower S, Howitt C L, et al. Identification and characterization of transcripts from the biotin biosynthetic operon of Bacillus subtilis. J.Bacteriol., 1996,178(21):6361-6365
    Perkins J B, Sloma A, Heermann T, et al. Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J. Ind. Microbiol. Biotechnol., 1999, 22:8-18
    Rodionov D A, Andrei A M, Mikhail S G. Conservation of the biotin regulon and the birA regulatory signal in Eubacteria and Archaea. Gen. Res., 2002, 12:1507-1516
    Rodríguez-Meléndez R, Pérez-Andrade M E, et. al. Differential effects of biotin deficiency and replenishment on rat liver pyruvate and propionyl-CoA carboxylases and on their mRNAs. Mol. Gen. Metabol., 1999, 66(1):16-23
    Rossi M, Brigidi P, Rodriguez A G V, et al. Characterization of the plasmid pMB1 from bifidobacterium longum and its use for shuttle vector construction. Res. Microbiol., 1996, 147(3): 133-143
    Sakurai N, Yuji I, Makoto M, et al. Construction of a biotin-overproducing strain of Serratia marcescens. Applied and Enviromental Microbiology, 1993, 59(9):2857-2863
    Sakurai N, Yuji I, Makoto M, et al. Molecular breeding of a biotin-hyperproducing Serratia marcescens strain. Appl. Envir. Microbiol., 1993, 59(10):3225-3232
    Sakurai N, Imai Y, Komatsubara S. Instability of the mutated biotin operon plasmid in a biotin-producing mutant of Serratia marcescens. Journal of Biotechnology , 1995, 43(1): 11-19
    Sakurai N, Akatsuka H, Kawai E, et al. Complete sequence and orgnization of the Serratia marcescens biotin operon. Miorobiology,1996, 142:3295-3303
    Sanyal I, Lee S L, Flint D. Biosythesis of pimeloyl-CoA, a biotin precursor in Escherichia coli, follows a modified fatty acid sythesis pathway: 14C-labeling studies. J. Am. Chem. Soc., 1994, 116:2637-2638
    Serebriiskii I G, Vassin V M, Tsygankov Y D. Two new members of the BioB superfamily: cloning, sequencing and expression of bioB genes of Methylobacillus flagellatum and Corynebacterium glutamicum. Gene, 1996, 176(1-2): 15-22
    Shiau S Y, Chin Y H. Estimation of the dietary biotin requirement of juvenile hybrid tilapia, Oreochromis niloticus × O. aureus. Aquaculture, 1999, 170:71-78.
    Shiuan D, Campbell A. Transcriptional regulation and gene arrangment of Escherichia coli, Citrobacter freundii and Salmonella typhimurium biotin operons. Gene, 1988,67:203-211
    
    Showsh S A, Robert E A J. Analysis of the requirement for a pUB110 mob region during Tn916-dependent mobilization. Plasmid, 1999, 41():179–186
    So M Y, Pan C H, Rhee S, et al. Design of an expression vector and its application to heterologous protein expression in Bacillus subtilis. Biotechnology Letters, 2002, 24:1869-1874
    Stewart M R J, Venables W A, Manchee R J. Stability of single-stranded DNA plasmids during continuous culture of Bacillus subtilis, and the effects of host chemostat-experience. FEMS Microbiology Letters, 1996, 136(3): 317-323
    Stok J E, De Voss J J. Expression, purification, and characterization of BioI: A carbon-carbon bond cleaving cytochrome P450 involved in biotin biosynthesis in Bacillus subtilis. Arch. Biochem. Biophy., 2000, 384(2): 351-360
    Thomas D John I, Morgan J A W, Whipps J M,et al. Transfer of plasmid pBC16 between Bacillus thuringiensis strains in non-susceptible larvae. FEMS Microbiology Ecology, 2002, 40:181-190
    Tomczyk N H, Nettleship J E, Baxter R L, et al. Characterisation of the BIOH protein from the biotin biosynthetic pathway. FEBS Letters, 2002,513:299-304
    Udaka S, Tsukagoshi N, Yamagata H. Bacillus brevis, a host bacterium for efficient extracellular production of useful proteins. Biotech. Eng. Rev., 1989, 7:113-146
    Vyas V V, Gupta S, Sharma P. Stability of a recombinant shuttle plasmid in Bacillus subtilis and Escherichia coli. Enzyme Microb. Technol., 1994, 16:240-247
    Wallace J C, Jitrapakdee S, Chapman-Smith A. Pyruvate carboxylase. Inter J. Biochem. Cell Biol., 1998, 30(1) : 1-5
    Weaver L H, Keehwan K, Dorothy B, et al. Corepressor-induced orgnization and assembly of the biotin repressor: a model for allosteric activation of a transcriptional regulator. PNAS, 2001, 98(11):6045-6050
    Wells J A, Ferrari E, Henner D J, et al. Cloning, sequencing and secretion of Bacillus amyloliqefaciens subtilisin in Bacillus subtilis. Nucleic Acids Res., 1983,11:7911-7925
    Wu C H, Chen H Y, Shiuan D. Isolation and characterization of the Erwinia herbicola bio operon and the sequences of the bioA and bioB genes. Gene, 1996, 174(2): 251-258
    Wu C H, et al. Cloning and nucleotide of BioF (7-Keto-8-Amino Pelargonic Acid Synthetase), BioC and BioD ( Dethiobiotin Sythetase ) gene of Erwinia herbicola. Bioch. Mol. Biol. International., 1997, 41(2):311-315
    Wu S C, Wong S L. Development of improved pUB110-based vectors for expression and secretion studies in Bacillus subtilis. J. Biotechnol., 1999, 72(3): 185 - 195
    Wu S C, Yeung J C, Hwang P M, et al. Design, production, and characterization of an engineered biotin ligase (BirA) and its application for affinity purification of staphylokinase produced from Bacillus subtilis via Secretion. Pro. Expre. Purifi., 2002,24(3): 357-365
    Wu X C, lee w, Tran L,et al. Engineering a Bacillus subtilis expression-secretion system with a strain deficient six extracellular proteases. J. Bacteriol., 1991, 173:4952-4958
    Yamada H, Osakai M, Tani Y, et al. Biotin overproduction by biotin analog-resistant mutants of Bacillus sphaericus. Agric. Biol. Chem., 1983, 47(5):1011-1016
    Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene, 1992, 114(1): 81-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700