用户名: 密码: 验证码:
基于机器人的液流悬浮研抛加工理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回顾过去的20世纪,人类取得的每一项重大科技成果,无不与制造技术,尤其与超精密加工技术密切相关。超光滑自由曲面在现代光学及光电子学科、国防工业和超精密模具制造领域的作用愈来愈重要,相应的超光滑加工技术也成为现代超精密加工技术的重要组成部分。
    超光滑自由曲面加工技术发展的最新阶段主要是研究了一系列的非接触式抛光设备和方法,这是一些从加工机理到加工设备均为全新的加工方法,标志着超光滑自由曲面加工的发展方向。
    手工操作费时费力,效率低下,且难以取得良好的形状精度和表面质量,这大大制约了超光滑自由曲面制造技术的自动化程度。工业机械手和机器人的出现与应用,为研抛自动化加工的研究注入了新的活力。机器人化设备可以提高加工的自动化程度是制造自动化发展的重要方向。开展基于机器人平台的超光滑自由曲面加工技术的研究是可行的。
    本文研究开发了基于机器人平台的超光滑自由曲面的液流悬浮研抛系统。研抛系统由YR-SV3-J00型机器人、研抛装置、调速装置、计算机和两自由度的XY工作台组成,如图1所示。
    
    
    
    
    
    
    
    
    
    
    在常规加工技术中,能够获得最低表面粗糙度的方法是光学抛光。然而要获得超光滑自由曲面,必须对原有的加工技术进行变革或采用新原理的加工方法。
    近年来,在传统研磨抛光技术的基础上,出现了许多新型精密和超精密游离磨料加工方法,如弹性发射加工(又称软质粒子抛光)、液中研抛、液体动力抛光、磁流体抛光、挤压研抛、磁性研磨、滚动研磨、喷射加工等。
    本文依据动压和弹性发射加工的原理,构建液流悬浮研抛加工系统,加工区域如图2所示。磨料磨粒在研抛液中呈悬浮状态,由于研抛工具的高速旋转而随着流体一起运动。在靠近工件表面的微小区域产生流体动压,磨粒对工件表面产生弹性发射、机械冲击等综合作用。
    利用传统研抛理论和微观摩擦磨损理论,对研抛加工过程进行了理论分析。磨粒在弹性发射和动压作用下,对工件表面可能产生微量切削与挤压作用、多次塑变磨损和摩擦腐蚀磨损作用。根据微观摩擦磨损理论,当研抛时磨料磨粒与工件表层原子碰撞,不断削弱表层原子的结合能。于是当发生下一次碰撞时,表层原子会脱落。磨粒在研抛液中受离心力的作用下,不断碰撞工件表面的微观凸起,从而不断减弱表层原子的结合能,并使工件微观不平部分以分子或原子量级被去除。
    在加工过程中,磨粒对工件表面产生连续的冲击,使得工件表面经受循环载荷,在表层内产生剪切塑性变形并不断积累,出现周期性的位错。在摩擦过程中,剪切变形不断积累,使表面下一定深度处出现位错堆积,进而导致形成裂纹或空穴。裂纹在一定深度沿平行于表面的方向延伸,当裂纹扩展到临界长度后,工件表面材料以原子层级的剥落或者实现原子层塑性流动。
    由于研抛工具高速旋转的作用,在研抛工具与加工工件之间的微间隙会产生动压现象。对动压现象的研究,对间隙内的压力分布的分析会有利于更好的理解液流悬浮研抛加工的机理。为以后自由曲面研抛自动化加工时,对加工过程进行插补运算提高加工后表面质量的均匀性提供基础。
    
    磨粒所传递的能量是与研抛液的动压和速度相关的。研抛液的流动是研抛工具的高速旋转引起的,所以磨粒的速度是和研抛工具的速度相关的。对动压分布情况和单个磨粒受力分析进行分析,如图3、图4所示。
    随着工件表面受力的增大,工件表面可能产生塑性变形,足够大的时候就可以破坏表层原子与下一层原子之间的结合,实现表层原子的去除,反力越大就意示着能去除掉更多数量的原子。
    
    
    
    
    
    
    纳米级的磨粒冲击到工件表面,在以原子级去除的同时伴随着塑性变形的发生。当磨粒传递的能量足够达到材料的塑性屈服极限时,塑性变形就会产生。 工件材料的塑性屈服极限为 ,当 时,材料表面发生塑性变形。越大,塑性变形越大。由于磨粒撞击到粗糙峰顶和谷底时接触面积的不同导致产生的接触应力大小不一样(如图5、6所示),工件表面的塑性变形程度也不一样,而总体上表面粗糙度是降低的。
    在对研抛加工过程进行了理论分析的基础上,为了探索液流悬浮加工的有
    
    
    效性和能达到的效果,使用平面铝合金复合材料进行了两组试验条件下的研抛试验,其结果如图7、图8所示。
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    从研抛加工结果可以看出,经过液流悬浮研抛后工件表面粗糙度普遍有所降低,这就充分说明液流悬浮研抛作用的效果。从研抛前后粗糙度曲线对比可以看出,在粗糙度降低的区域其粗糙度峰值在经过加工后都降低了。个别点有粗糙度增大的现象,这说明在研抛过程存在磨粒对工件表面造成划伤的现象,不过并不明显。对位于加工区域的动压入口、出口及中心区域的被加工表面进行测量,得到的结果为在压力大的中心区域粗糙度下降较多,而在入口和出口压力小的区域粗糙度下降相对要少,和前文动压理论分析结果是一致的。从粗糙度值的角度来考虑,工件表面质量都是在亚微米级别上得到提高,因此可以认为采用微观摩擦磨损理论来解释研抛作用机理更为合适。为了更好的展现液
    
    
    流悬浮研抛对工件表面粗糙度提高的效果,作者认为有?
Reviewing the past 20th century, every great scientific and technical result that the mankind made is closely related with manufacturing technology, especially the ultra-precision machining. The ultra-smooth free-form surfaces are more and more important in the fields of modern optics and photoelectron discipline, national defense industry and ultra-precision moulds. The corresponding ultra-smooth machining technologies become the important part of modern ultra-precision machining technology too.
    The latest development stage of ultra-smooth free-form surfaces machining technologies is mainly to study a series of non-contacted polishing equipment and methods. These are the brand-new machining method from the machining mechanism to equipment. Those become the sign of development direction of ultra-smooth free-form surfaces machining.
    Polishing by hand is time-consuming, efficiency is low, and difficult to make good precision of form and surface quality, This restrain from the automatic degrees of ultra-smooth free-form surfaces machining technologies greatly. The appearance and applications of industry manipulator and robot, which inject new vigor for polishing and its automation machining. Robotized equipment that raises the automation degree is the important development direction of machining automation. It is feasible to develop the research of ultra-smooth free-form surfaces machining technologies on the basis of the platform of robot.
    In this paper, it is developed that hydrodynamic suspension polishing system for ultra-smooth free-form surfaces based on robot. The system is composed of YR-SV3-J00 robot, polishing equipment, speed variable motor, XY work table、
    
    
    computer and so on. It is shown as figure 1.
    
    
    
    
    
    
    
    
    
    
    In the routine technology of polishing, the optics polishing is the method to obtain minimum surface roughness. However, should be exceeded the smooth free curved surface, must change or adopt the machining method of the new principle to the already existing machining technology.
    In recent years, at the foundations of tradition polishing technology, there appear new-type ultra-precision and dissociate abrasive machining method, such as EEM, liquid polishing, hydrodynamic polishing, magnetic fluids polishing, abrasive extrusion lapping, magnetic abrasive finishing, rotation grinding and Jet machining and so on.
    In this paper, according to the principle of elasto-hydrodynamic and elastic emission, hydrodynamic suspension polishing system is established. Polishing region is shown as figure 2. Abrasive grains are suspended in the slurry and move with the fluid because of the rotation of polishing tool. There is hydrodynamic pressure close to the small area on the work piece surface. The abrasive grains produce synthesized function to work piece surface by elastic emission and mechanical strike.
    It is analyzed theoretically that the course of polishing by tradition and micro
    
    
    friction and wear theory. Through elastic emission and elasto-hydrodynamic, abrasive grains can produce function of micro cut and extrusion and plastic deformation wear and friction corrosion and wear. According to the theory of micro friction wear, in the course of polishing abrasive grains impact on top layer atom of the work piece, weaken the binding energy of the top layer atom constantly. Then when collide the next time, the top layer atom will come off. Abrasive grains collide the micro convex area constantly because of centrifugal force in the slurry, thus the binding energy of the top layer atom is weakened constantly, the work piece surface is removed with the molecule or atomic grade.
    In the course of polishing, abrasive grains produce the impact in succession to the work piece surface, make the work piece surface stand the circulation load. There are shear plastic deformation and accumulate constantly in the top layer and appear periodic dislocation. In the course of friction, shear deformation accumulate constantly, dislocation are accumulated in the certain degree of depth place under t
引文
李亨昭,邱敬之,戚法云. 先进制造技术的发展趋势与战略设想. 电子机械工程, No.2,2000
    沈金宝. 先进制造技术与自动化技术的发展趋势及其战略地位. 电子工艺技术,1997
    王章豹,刘光复,王厚宽. 发达国家先进制造技术发展趋势述要. 合肥工业大学学报(自然科学版),Vol.22,No.6, 1999
    宋天虎. 先进制造技术的发展与未来. 中国机械工程,Vol.9,No.4, 1998
    陈世平, 曹建国. 先进制造技术与机械制造业. 机械制造, Vol.40, No.450, 2002
    雷源忠,黎明,王雪. 机械工程科学前沿和优先领域的初步构想. 中国机械工程, Vol.11, No.1, 2000
    刘家豪,傅建中,陈子辰. 超精密加工的关键技术及发展趋势. 机电工程, Vol.18,No.5, 2001
    I. Zarudi, B.S. Han. Deformation and material removal rate in polishing silicon wafers. Journal of Materials Processing Technology 140 (2003) 641-645
    N. Umehara, M. Kawauchi. Fundamental polishing properties of frozen magnetic fluid grinding. Journal of Magnetism and Magnetic Materials 201 (1999) 364-367
    Y. Liu et al. Investigation on the final polishing slurry and technique of silicon substrate in ULSI. Microelectronic Engineering 66 (2003) 438-444
    Y.A. Gharbia, J. Katupitiya. Loose abrasive blasting as an alternative to slurry polishing of optical fibre end faces. International Journal of Machine Tools & Manufacture 43 (2003) 1413-1418
    吴敏镜. 超精密加工技术的现状和展望. 航空精密制造技术, Vol.38,No.3, 2002
    
    杨辉,吴明根. 现代超精密加工技术. 航空精密制造技术, Vol.33,No.1, 2001
    王先逵,吴丹,刘成颖.精密加工和超精密加工技术综述.中国机械工程,Vol.10, No.5, 1999
    荣烈润. 面向21世纪的超精密加工技术.机电一体化,No.2, 2003
    李圣怡,朱建忠. 超精密加工及其关键技术的发展.中国机械工程,Vol.11,No.1, 2000
    许茂桃. 超精密加工技术的发展及其对策. 制造技术与机床,No.1, 2001 
    辛企明,蒋月娟. 21世纪初光学零件加工技术的发展趋势. 光电子技术与信息, Vol.13,No.3, 2000
    黄春峰,赖传兴,陈树全. 现代特种加工技术的发展. 航空精密制造技术, Vol.37,No.6, 2001
    袁哲俊,谢大纲.纳米技术的最新发展.制造技术与机床,No.5, 2000
    赵清亮,李旦,董申. SPM应用于超精密加工领域的重要性及特殊性. 航天工艺,No.6, 1998
    高宏刚,曹健林,朱镛,陈创天. 超光滑表面及其制造技术的发展.物理,Vol.29,No.10, 2000
    X.K. Shi et al. Automatic recognition and evaluation of micro-contaminant particles on ultra-smooth optical substrates using image analysis method. Optics and Lasers in Engineering 41 (2004) 901-917
    周志雄,邓朝晖,陈根余,宓海青. 磨削技术的发展及关键技术.中国机械工程,Vol.11,No.1-2, 2000
    李锡善,戈鹤忠. 超光滑表面加工技术.激光与光电子学进展,No.11, 1998
    张云庆. 大型光学玻璃超光滑表面加工技术.光电子技术与信息,No.3, 2003
    李丽伟,董申,程凯. 超光滑表面的加工、表征和功能. 工具技术, Vol.36,No.8, 2002
    赵兴科,王中,郑玉峰,赵连城. 抛光技术的现状.表面技术,
    
    
    Vol.29,No.2, 2000
    高宏刚,陈斌,张俊平,曹健林. 亚纳米量级光滑表面的超精密抛光.仪器仪表学报,Vol.18,No.1, 1997
    S. C. Lin, M. L. Wu. A study of the effects of polishing parameters on material removal rate and non-uniformity. International Journal of Machine Tools & Manufacture 42 (2002) 99-103
    Z. Zhong. Surface finish of precision machined advanced materials. Journal of Materials Processing Technology 122 (2002) 173-178
    A.R.Jones,J.B. Hull. Ultrasonic flow polishing. Ultrasonics 36 (1998) 97-101
    B. K. A. Ngoi,P. S. Sreejith. Ductile Regime Finish Machining - A Review. Int J Adv Manuf Technol, (2000) 16: 547-550
    J.Shimizu et al. Simulation and experimental analysis of super high-speed grinding of ductile material. Journal of Materials Processing Technology 129 (2002) 19-24
    Y.L. Chen et al. The technology combined electrochemical mechanical polishing. Journal of Materials Processing Technology 140 (2003) 203-205
    N. Umehara. MAGIC polishing. Journal of Magnetism and Magnetic Materials 252 (2002) 341-343
    W. Xiaosheng et al. Non-abrasive polishing of glass. International Journal of Machine Tools & Manufacture 42 (2002) 449-456
    W.B.Kim et al. The electromechanical principle of electrorheological fluid-assisted polishing. International Journal of Machine Tools & Manufacture 43 (2003) 81-88
    Y.T. Su et al. Ultra-precision machining by the cylindrical polishing process. International Journal of Machine Tools & Manufacture 43 (2003) 1197-1207
    陈明君,王立松,梁迎春,卢泽生. 脆性材料塑性域的超精密加工方法. 航空精密制造技术, Vol.37,No.2, 2001
    
    崔胜民,曹国辉. 电化学超精密研磨机床的研制.制造技术与机床, No.5, 2002
    王艳,胡德金. 磁性磨粒的磨削机理与制备工艺.工具技术,Vol.37,No.6, 2003
    张伯鹏,孟威等. 新型机器人化制造装备设计研究及建造. Vol.40,No.8,2000
    J. P. Huissoon et al. Automated Polishing of Die Steel Surfaces. Int J Adv Manuf Technol (2002) 19: 285-290
    J.H. Ahn et al. Intelligently automated polishing for high quality surface formation of sculptured die. Journal of Materials Processing Technology 130-131 (2002) 339-344
    H.y. Tam et al. Robotic polishing of free-form surfaces using scanning paths. Journal of Materials Processing Technology 95 (1999) 191-200
    詹建明. 机器人研磨自由曲面时的作业环境柔顺控制研究: [博士学位论文]. 长春, 吉林大学, 2002
    于淼,詹建明. 机器人复合加工模具曲面的试验研究. 长春大学学报, No.10,2000
    张雷,袁楚明等.模具曲面机器人抛光工艺过程的建模与仿真. 华中科技大学学报, Vol.29, No.4, 2001
    祝佩兴,赵继,于淼等.机器人超声—电火花复合加工模具曲面的干涉预报与实验研究.中国机械工程, No.10,2000
    赵继,詹建明等. 机器人弹性超声研磨自由曲面的过程识别与优化. 机械工程学报, No.1,2000
    Ji Zhao, Jianming Zhan, Rencheng Jin, Minzhong Tao. An oblique ultrasonic polishing method by robot for free-form surfaces. International Journal of Machine Tools & Manufacture, 40(2000) 795-808
    J.M. Zhan,J.zhao,S.X. Xu,P.X. Zhu. Study of the contact force in free-form-surfaces compliant EDM polishing by robot. Journal of Materials Processing Technology,129 (2002) 186-189
    金茂菁,曲忠萍,张桂华.国外工业机器人发展态势分析,机器人技术与应用,No.2,2001
    
    詹建明,赵继,祝佩兴.机器人超声研抛自由曲面的精加工系统.中国机械工程,Vol.11, No.8, 2000
    日本YASKAWA电子公司,小型机器人MOTOMAN-SV3X、YR-SV3-J00型机器人说明书
    深圳固高科技有限公司,型号为GXY-K5050简介说明书
    蔡光起,冯宝富,赵恒华. 磨削磨料加工技术的最新发展.航空制造技术,No.4, 2003
    Y. T. Su et al. A preliminary study on smoothing efficiency of surface irregularities by hydrodynamic polishing process. Wear,249 (2001) 808-820
    Y. T. Su et al. An experimental study on tool wear of hydrodynamic polishing process. Wear 246 (2000) 117-129
    J. B. Chiu et al. Application of soft landing to the process control of chemical mechanical polishing. Microelectronic Engineering 65 (2003) 345-356
    C.H. Cho et al. Three-dimensional wafer scale hydrodynamic modeling for chemical mechanical polishing. Thin Solid Films 389 (2001) 254-260
    I. Lerche,E. K. Paleologos. Control Function Measures for Hydrodynamic Problems. Mathematical Geology, Vol.34, No.3,2002
    Y.Y. Lin, S.P. Lo. Finite element modeling for chemical mechanical polishing process under different back pressures. Journal of Materials Processing Technology 140 (2003) 646-652
    C. Zhou et al. Fluid pressure and its effects on chemical mechanical polishing. Wear 253 (2002) 430-437
    S.S. Park et al. Hydrodynamic analysis of chemical mechanical polishing process. Tribology International 33 (2000) 723-730
    H. Hocheng, K.L. Kuo. Fundamental study of ultrasonic polishing of mold steel. International Journal of Machine Tools & Manufacture 42 (2002) 7-13
    J.L. Yuan et al. Lapping and polishing process for
    
    
    obtaining super-smooth surfaces of quartz crystal. Journal of Materials Processing Technology 138 (2003) 116-119
    J.Sun et al. Material removal in the optical polishing of hydrophilic polymer materials. Journal of Materials Processing Technology 103 (2000) 230-236
    A. D. Polyanin,A.I. Zhurov. Methods of Generalized and Functional Separation of Variables in Hydrodynamic and Heat- and Mass- Transfer Equations. Theoretical Foundations of Chemical Engineering, Vol. 36, No. 3, 2002
    温诗铸.纳米摩擦学.北京:清华大学出版社,1998:30~31
    王吉会,温诗铸,路新春. 材料微观摩擦磨损的研究进展. 润滑与密封, No.10, 2000
    温诗铸,李娜.纳米摩擦学基础研究进展.材料研究学报,Vol.11,No.1, 1997
    李娜,温诗铸.基于原子尺度的摩擦学研究——纳米摩擦学.中国机械工程,Vol.8,No.2, 1997
    Y.T. Su, Y.C. Kao. An experimental study on machining rate distribution of hydrodynamic polishing process. Wear 224(1999) 95-105
    S. Ciraci, A. Buldum. Atomic-scale study of friction and energy dissipation. Wear 254 (2003) 911-916
    M.Y. Yang,H.C. Lee. Local material removal mechanism considering curvature effect in the polishing process of the small aspherical lens die. Journal of Materials Processing Technology 116 (2001) 298-304
    F.G. Shi, B. Zhao. Modeling of chemical-mechanical polishing with soft pads. Appl. Phys. A 67 (1998) 249-252
    T.Hoshino et al. Mechanism of plolishing of SiO2 films by CeO2 particles. Journal of Nom-Crystalline Solids 283 (2001) 129-136
    M.Jiang et al. On chemo-mechanical polishing(CMP) of silicon nitride(Si3N4) workmaterial with various abrasives. Wear 220 (1998) 59-71
    
    J.L. Yuan et al. Research on abrasives in the chemical-mechanical polishing process for silicon nitride balls. Journal of Materials Processing Technology 129 (2002) 171-175
    C. Srinivasa-Murthy et al. Stress distribution in chemical mechanical polishing. Thin Solid Films 308-309 (1997) 533-537
    S.J. Lee et al. The polishing mechanism of electrochemical mechanical polishing technology. Journal of Materials Processing Technology 140 (2003) 280-286
    Z. Zhu et al. Tribochemical polishing of silicon carbide in oxidant solution. Wear 225-229 (1999) 848-856
    B. Mullany, G. Byrne. The effect of slurry viscosity on chemical-mechanical polishing of silicon wafers. Journal of Materials Processing Technology 132 (2003) 28-34
    文玉华,朱如曾等.分子动力学模拟的主要技术.力学进展,Vol.33,No.1, 2003
    R. Komanduri et al. MD simulation of indentation and scratching of single crystal aluminum. Wear 240 (2000) 113-143
    罗熙淳,梁迎春,董申. 分子动力学在纳米机械加工技术中的应用. 中国机械工程,Vol.10,No.6, 1999
    张田忠,郭万林. 纳米力学的数值模拟方法.力学进展,No.2, 2002
    E. Spohr. Molecular dynamics simulations of water and ion dynamics in the electrochemical double layer. Solid State Ionics 150 (2002) 1-12
    刘向阳.光学材料超光滑表面抛光的研究:[博士学位论文].长春,吉林大学,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700