用户名: 密码: 验证码:
基于垂直腔面发射激光器的多速率850nm小型可插拔光收发模块的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Research and Design of Multi-Rate 850nm SFP Transceiver Based on VCSEL
  • 作者:孙海涛
  • 论文级别:硕士
  • 学科专业名称:电路与系统
  • 学位年度:2004
  • 导师:王剑钢
  • 学科代码:080902
  • 学位授予单位:吉林大学
  • 论文提交日期:2004-05-01
摘要
本篇论文主旨是研究和设计基于垂直腔面发射激光器(VCSEL)的光收发一体模块,目标是符合小型可插拔(SFP)和多厂商协议(MSA)的市场,并且可应用于其他的高速光收发器。
    论文的第一部分主要是简要介绍了光纤通信系统的历史、现状及其未来发展的方向。
    在论文的第二部分详细介绍了数字光纤通信系统中的光收发模块的基本原理。基本原理分为两部分,即光发射机的基本原理和光接收机的基本原理。
    光发射机的功能是将电脉冲信号转换成光脉冲信号,并以数字光纤通信系统传输性能所要求的光脉冲信号波形从光源器件的尾纤发射出去。光发射机的基本结构由码型变换电路、激光器驱动电路和光源器件(即激光器)组成。为了完善通信系统的性能,除了主干电路外,还必须加入一些附加电路,如自动功率控制电路、自动温度控制电路和保护电路等等。
    光接收机的基本功能是用光检测器将光纤中的微弱的光脉冲信号通过光电效应转换成电脉冲信号,并且给予足够的放大。经过均衡和再生后,转变成标准的数字脉冲信号。光接收机的基本结构由光检测器、前置放大器、主放大器、自动增益控制电路和再生电路所组成。
    光收发模块的设计工作是本论文的主要部分,主要包括设计中所使用的光源器件和功能芯片的选择、主要参数的设置、电路原理图设计、印刷电路板的制作和接口与封装的设计。
    设计所选用的光源器件是由吉林大学集成光电子学实验室研制的850nm垂直腔面发射激光器。功能芯片采用美国美信公司生产的光收发模块SFF/SFP设计专用系列芯片,包括MAX3740、MAX3744、MAX3748和DS1859。
    MAX3740是一款适用于工作在多速率的SFF/SFP模块中的共阴VCSEL驱动器。其基本结构包括一个偏置电流发生器、激光器电流调制器和安全电路部分。自动功率控制部分通过调节VCSEL的偏置电流,使其在工作温度和本身的性能发生变化时能够保持恒定的平均光功率。MAX3740可提供最高可达15mA的调制电流和偏置电流,并且配合DALLAS DS1859控制器,无需任何外部元件,便可符合SFF-8472定时和诊断的需要。MAX3740的安全电路若探测到错误便关闭激光器的输出,其安全电路同样符合SFF和SFP多厂商协议。
    接收部分采用前置放大器芯片MAX3744和限幅放大器芯片MAX3748来设计。在具体应用时,从减少干扰等方面考虑,通常将前置放大器芯片MAX3744同光电二极管封装在一起,称为ROSA。MAX3744芯片同MAX3748芯片可以提供接收信号强度指示(RSSI)。MAX3744将测得的RSSI信号通过其输出端的共模电压传送给MAX3748,MAX3748将其转化成一个对地参考电压值后输出,输出值被DS1859数字电位器进行实时监测,这里MAX3748应直流耦合到MAX3744。
    DS1859双组温度控制非易失性可变数字电位计包括两个50K、256位可
    
    
    变电阻,一个“直接到数字”的温度传感器,提供三个外部电压监视和一个内部电压VCC监视,遵从SFF-8472协议并提供内部校准。DS1859通过改变电阻来对调制电流和偏置电流进行温度补偿。可变电阻的设定值存储在EEPROM存储器中,并可通过工业标准的双线串行总线来访问。每一个可变电阻的阻值由温度-地址查询表决定,该查询表在-40℃~+120℃范围内每增加2℃就对应一个电阻值。温度、电源电压和三个监视的输出可通过串行总线得到,DS1859还可对电源电压和三个监视端的标志位进行设定和读取。
    模块的印刷电路板采用具有公共接地层的四层板,有两个电源层(正极和地层);封装采用符合工业标准的2×10 SFP多厂商引脚;光纤接口使用标准的LC光纤连接器。
    本论文的最后一部分是光收发模块的性能测试方案部分。给出了实验测试所需的主要设备和测试的步骤,并且给出了光收发模块测试时的环境参数。
In this thesis, we will research and design the optical transceiver module based on VCSEL(Vertical Cavity Surface Emitting Laser), which targeted for the Small Form Factor Pluggable(SFP) Multisource Agreement (MSA) market and other high-speed optical transceiver applications.
    In the first part of this thesis, the history, status and development of fiber-optic communication system are introduced.
    In the second part , we study the theory of optical transceiver module in the digital fiber-optical communication system . It is devided into two parts : the transmitter and the receiver .
    Transmitter is the device which changes electrical pulse signal into optical pulse signal , and then transmit the optical signal in wave form by laser diode or light-emitting diode. The elementary circuit of the transmitter is made up of code transform circuit , laser driver circuit and laser diode . But to perfect the system performance , some accessorial circuits are necessary , such as automatic power control circuit , automatic temperature control circuit and protective circuit etc .
    Optical receiver is used to transform the optical pulse signal received from fiber-optic into current pulse signal by photoemission , and the output current signal is amplified . After equilibrium and regeneration , the current pulse signal reverts to standard digital pulse signal . The elementary circuit of the receiver is made up of PIN photodiode , pre-amplifier, main amplifier , automatic gain control and regeneration circuit .
    Designing the optical transceiver module is the primary part of this thesis . In this part , the contents contain the choice of chip and component , parameter setting , circuit diagram designing , printed circuit board making and interface and encapsulation designing .
    Laser diode we used here is 850nm VCSEL(Vertical Cavity Surface Emitting Laser) produced by integrated optoelectronics lab of JiLin university. The chips we select are the production of MAXIM corporation of U.S.A., including MAX3740, MAX3744, MAX3748, DS1859.
    The MAX3740 is a high-speed VCSEL driver for small-form-factor (SFF) and small-form-factor pluggable (SFP)
    
    
    fiber optic LAN transmitters. It contains a bias generator, a laser modulator, and comprehensive safety features. The automatic power control (APC) adjusts the VCSEL bias current to maintain average optical power over changes in temperature and VCSEL properties.The MAX3740 can switch up to 15mA of VCSEL modulation current and source up to 15mA of bias current. The MAX3740 interfaces with the Dallas DS1859 to meet the SFF-8472 timing and diagnostic requirements.The MAX3740 safety circuitry detects faults that could cause hazardous light levels and disables the VCSEL output. The safety circuits are compliant with SFF and SFP multisource agreements (MSA).
    The receiver section is designed using the MAX3748 limiting amplifier (LA) and MAX3744 transimpedance amplifier (TIA). Here we encapsulate the MAX3744 and a PIN photodiode in a TO can, called ROSA—Receiver Optical Sub-Assembly. Using the MAX3744 with the MAX3748 allows RSSI monitoring while using a common 4-pin TO header. The received signal strength indicator (RSSI) is measured inside the MAX3744 and is sent to the MAX3748 limiting amplifier through the common mode voltage of the TIA outputs. The MAX3748 senses this voltage and converts it to a ground-referenced output that can then be monitored by the DS1859 digital resistor. To use this feature, the MAX3748 must be DC coupled to the MAX3744 TIA.
    The DS1859 Dual Temperature-Controlled NV Variable Res- istor consists of two 50k. 256-position variable resistors, a “dire- ct-to-digital” temperature sensor, three external voltage monitors, and one internal voltage monitor for VCC. The DS1859 is comp- liant with SFF-8472 requirements and provides internal calibrati- on. The device provides temperature compensation to the bias and modulation currents by changing the resistance as a function of temperature using look-up tables . The variable resistors’ settings are stored in
引文
[1] 赵梓森等,光纤通信工程,人民邮电出版社,第二版,1999年,349-489
    [2] 徐宝强,杨秀峰,夏秀兰等,光纤通信及网络技术,北京航空航天大学出版社,1999年,第一版,119-146
    [3] 苏越琼,光电收发模块主要发展方向,电子产品系列,2000年11月,26-27
    [4] Randy Clark,SFP光收发模块的集成故障诊断方法,光通信技术,2003年,第1期,49-51
    [5] 陈丽,何岩,EPON光收发模块的性能要求,光通信研究,2003年,第1期,9-13
    [6] 亢俊健,宁书年等,光收发模块眼图、消光比及灵敏度关系的实验研究,激光杂志,2003年,第24卷第2期,61-62
    [7] 黄春芳,千兆以太网光接口电路设计,长沙电力学院学报,2003年,第18卷第2期,57-60
    [8] 苏小虎,谢世钟,我国光电子技术和器件的发展现状及展望,中国信息导报,2001年,第6期,1-3
    [9] Milt Monnier,用MAX3861 AGC放大器构成SFP限幅放大器,电子设计应用,2003年,第3期,19-21
    [10] 胡毅,丁国庆等,40G光收发模块的技术分析,光通信技术,2003年,第2期,15-18
    [11] 何华杰,顾畹仪等,级联光放大器通信系统中信噪比的变化,电子学报,1997年,第25卷,第1期,117-120
    [12] 徐长根,数字光纤通信系统半导体激光器的功率控制和保护,光通信研究,1983年,第1期
    [13] 高稚允,高岳,光电检测技术,国防工业出版社,第一版,1995年
    [14] 张义和,电路设计高手,宇航出版社,第二版,1999年
    [15] 精英科技编著,电路板设计完全手册,中国电力出版社,第二版,2002年
    [16] 毛谦,中国光纤通信技术的现状及未来,电信科学,2000年,第1期,25-28
    [17] 钟卫平,光电检测器及其在光纤通信系统中的应用,红外
    技术,1994年,第1期
    [18] 黄水清,林原,LD数字光纤发射模块的控制方法,光电
    
    子. 激光,2000年,第3期
    [19] MXIM High-Frequency/Fiber Communications Group, Extinction Ratio and Power Penalty, 2001
    [20] MXIM High-Frequency/Fiber Communications Group, Optical Signal-to-Noise Ratio and the Q-Factor in Fiber-optic Communication Systems, 2002
    [21] MXIM High-Frequency/Fiber Communications Group, choosing AC-Coupling Capacitors, 2000
    [22] MXIM High-Frequency/Fiber Communications Group, Optimizing the Resolution of Laser Driver Current Settings Using a Linear Digital Potentiometer, 2003
    [23] MXIM High-Frequency/Fiber Communications Group, A Brief Introduction to Jitter in Optical Receivers, 2000
    [24] MXIM High-Frequency/Fiber Communications Group, Maintaining the Extinction Ratio of Optical Transmitters Using K-Factor Control, 2002
    [25] MXIM High-Frequency/Fiber Communications Group, Optical Receiver Performance Evaluation, 2003
    [26] MXIM High-Frequency/Fiber Communications Group, Accurately Estimating Optical Receiver Sensitivity, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700