用户名: 密码: 验证码:
骨组织超低温保存中CPA导入和洗脱过程的传递现象
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超低温保存技术是一种长时间保存细胞和组织的有效方法,在许多领域都得到了广泛的应用。而临床医学的发展和需求,使得工程组织和生物活体器官的超低温保存成为了当今生物医学工程研究的最前沿的研究课题。目前在全世界每年进行器官移植手术中,骨移植的数量仅次于输血居第二位。但对于异体骨移植,如何实现长期保存就成为了问题的关键。若能将超低温保存技术成功用于保存治疗大体积骨缺损所需的自体骨或异体骨,则可使骨缺损的临床治疗更加便利、大大减少病人的痛苦和损失。因此骨组织的超低温保存有着辉煌的发展前景和广泛的应用价值。
     本实验首先对骨细胞和骨组织的体外培养进行了研究,确定所研究对象的准确性,并保证实验前期实验材料的活性。
     其次对实验的关键技术进行了交叉检验。通过核磁共振技术和渗透压技术对冷冻保护液中冷冻保护剂的浓度进行交叉检验;同时用荧光双重标记法和台盼兰据染法对骨组织内的细胞的成活率进行交叉检验。实验结果表明,渗透压测定浓度的方法是一种既简洁又准确的表征溶液中主要溶质浓度的方法;台盼兰据染法在正确操作的前提下可以得到很准确的CPA处理后的骨细胞的成活率。
     同时还考察了冷冻保护剂在骨组织中的导入和洗脱过程对细胞和组织活性的影响。选取了两种冷冻保护剂的三种不同的浓度,考察了冷冻保护剂种类、浓度、操作温度、导入或洗脱方案以及后期培养等因素对骨细胞成活率的影响。实验结果表明:冷冻保护剂在导入过程中对细胞或组织的损伤主要为渗透损伤和毒性损伤,受二者共同作用存在一个最佳导入时间和最佳导入方案。洗脱方案的确定也由这二者的共同作用的影响;连续式导入或洗脱之后的细胞成活率要高于分步导入或洗脱;甘油渗透性要比DMSO差,但其毒性作用也比DMSO小;甘油渗透性受温度影响比较大,DMSO毒性受温度影响比较大。
     最后,对骨组织内的主要细胞,成骨细胞进行了超低温保存过程中的冷冻和复温过程的考察。通过改变降温速率和复温速率对三种冷冻保护剂的保护作用进行了实验。结果表明,玻璃化冻存效果要明显优于非玻璃化冻存。非玻璃化冷冻保护剂在冷冻过程中存在部分玻璃化现象,但不能体现出玻璃化的优势。玻璃化冷冻保护剂也只有在冷却速率达到一定数值时才能实现以玻璃化为主的部分玻璃化,或者完全玻璃化。随冷却速率的增大,玻璃化冷冻保护剂的玻璃化能力越来越显著;VS1无论是在玻璃化温度方面,完全玻璃化能力方面,玻璃化形态(有无低温断裂)方面,对成骨细胞的整体保护作用方面,在最佳降温速率适用范围方面还是在对组织超低温保存的适用性方面,均优于7mol/L的DMSO溶液,只有在反玻璃化方面要逊于7mol/L的DMSO溶液;玻璃化冷冻保护剂的反玻璃化现象与低温断裂以及降温过程形成的冰晶都有着密切的联系,并且反玻璃化的程度随着复温速率的增大而减小。
Cryopreservation is a technique by which cells and tissues can be long-term preserved. With the more rapid development of medical science and the more urgent demand of clinic treatment, the cryopreservation of engineered tissue and live organ becomes the most advanced and promising research field of biomedical engineering. The data shows that around the world, the number of bone transplant operation is the second large one only less than blood transfusion. It will facilitate the clinic therapy and lessen the patients' pain if the autograft and heterograft of bone used for large-area bone loss can be successfully cryopreserved. Therefore the cryopreservation of bone tissue has a promising future and an extensive practical value.
    At the beginning of the research of this thesis, osteoblasts and bone tissue is cultured in-vitro and the main techniques used in the experiment are cross-checked. By cross-checking the concentration of cryoprotective agent (CPA) and the viability of cells within bone tissue, we conclude that osmotic pressure technique and Typan blue stain method can precisely reflect two major parameters above.
    Meanwhile, the loading and removing process of cryopreservation are studied by choosing three different concentrations of two CPAs. Type and the concentration of CPA, operating temperature, loading and removing protocol and post-culture is set as parameters to check their effects on the characteristics of the whole process. Results show that the osmosis damage and the toxicity damage are two major factors for the loss of cells' viability, that continuous loading and removing is better than intermittent ones, that glycerol's osmosis ability is worse than DMSO, but its toxicity is less than DMSO and that the effect of temperature change on the glycerol's osmosis ability is much more than on DMSO's, but its effect on DMSO's toxicity is much more than on glycerol's.
    Finally, osteoblasts, the major cells in bone tissue, are freezed and thawed. By using three kinds of CPAs and changing the cooling rate and thawing rate, we conclude that for osteoblasts' cryopreservation, vitrification overmatches the crystallization. Non-vitrified CPA can partially vitrify, but can not show the superiority of vitrification, that with the increase of the cooling rate, vitrified CPA's ability to vitrify shows more greatly, that for two kinds of vitrified CPA studied in this experiment, VS1 is superior to 7mol/L DMSO in almost all aspects except the ability to overcome the devitrification, that the phenomena of the devitrification is closely related to the ice crystal appeared while freezing and the cryo-fragmentation and that the devitrification is blocked and finally prevented with the increasing of the thawing rate.
引文
[1].李广武,郑从义,唐兵.低温生物学.湖南科学技术出版社 1998,:1-2.
    [2].薛庆善.体外培养的原理与技术.科学出版社,2001:129.
    [3].华泽钊,任禾盛.低温生物医学技术.科学出版社,1994:1-2.
    [4]. H Fansa, F Lassner, P H Kook, G Keilhoff, W Schneider. Cryopreservation of peripheral nerve grafts. Muscle Nerve, 2000,23:1227-1233
    [5]. W J M Mass, W R Leeman, J P Groten, J J M Van De Sandt. Cryopreservation of precision-cut rat liver slices using a computer-controlled freezer. Toxicology in Vitro 2000,14:523-530.
    [6]. A Guillouzo, L Rialland, A Fautrel, C Guyomard. Survival and function of isolated hepatocytes after cryopreservation. Chemico-Biological Interactions, 1999,121:7-16.
    [7]. A P Li. Overview:hepatocytes and cryopreservation-a personal historical perspective. Chemico-Biological Interactions 1999,121:1-5.
    [8]. G Vajta. Vitrification of the oocytes and embryos of domestic animals. Animal Reproduction Science, 2001,60-61:357-364.
    [9]. P F Watson. The causes of reduced fertility with cryopreserved semen. Animal Reproduction Science, 2000,60-61:481-492.
    [10]. S Menoret, M Jean, L Tesson, J soulillou, I Anegon, B Charreau. Optimization of cryopreservation procedures for rat embryos. Transplantation Proceedings 1999,31: 1531-1532.
    [11]. J M Shaw, A Oranratnachai, A O Trounson. Fundamental cryopreservation oocytes and ovarian tissue. Theriogenology, 2000,53:59-72.
    [12]. W V Hok. Fundamental aspects of sperm cryobiology:the importance of species and individual differences. Theriogenology, 2000,53:47-58.
    [13]. J M Shaw, S L Cox, A O Trouson, G Jenkin. Evaluation of the long-term function of cryopreserved ovarian grafts in the mouse, implications for human applications. Molecular and Cellual Endocrinology, 2000,161:103-110.
    [14]. N R Mtango, M D Varisanga, Y J Dong. The effect of prefreezing the diluent portion of the straw in a step-wise vitrification process using ethylene glycol and polyvinylpyrrolidone to preserve bovine blastocysts. Cryobiology, 2001,42: 135.
    [15]. L L Kuleshova, J M Shaw, A O Trounson. Studies on replacing most of the penetrating cryoprotectant by polymers for embryo cryopreservation. Cryohiology, 2001, 43:21.
    [16]. Y Udoh, H Yanaga, Y Tai, K Y Inoue. Long-term viability of cryopreserved cultured epithelial grafts. Burns, 2000,26:535-542.
    [17]. S Saito, N Fukushima, Y Naka, M Tori, Y Kobayashi, Y Tsukamato, R Shirakura. Prolonged patency of hamster aortic xenografts in rat by cryopreservation. Transplantation Proceedings, 1998,30:3821-3823.
    [18].周国燕,徐红艳,华泽钊,黄惠民,丁文祥.血管低温保存的实验研究.中国生物医学工程学报,2002,21(1):5-8.
    [19]. T Aoki, Y Vamato, M Tsuchida, T Souma, K Yoshiya, T Watanabe, J Hayashi. Successful tracheal transplantation using cryopreserved allografts in a rat model. European Journal of Cardio-thoracic Surgery, 1999,16:169-173.
    
    
    [20].魏民.玻璃化法保存异体动脉的实验研究.博士论文,2002:101-105
    [21]. Y C Song, P O Hagen, F G Lightfoot. In vivo evaluation of the effects of a new ice-free cryopreservation process on autologous vascular grafts. J Invest Surg 2000,13:279.
    [22]. X Wang, H Chen, H Yin, S S Kim, S L Tan, R G Gosden. Fertility after intact ovary transplantation. Nature, 2002,415(6870):385.
    [23]. J O M Karlsson. Cryopreservation: Freezing and Vitrification. Science, 2002,296:655-656.
    [24]. L L Kuleshova, A Lopata. Vitrification can be more favorable than slow cooling. Fertility and Sterility, 2002,78(3):449-454
    [25]. Z F Cui. The Cryopreservation of Living Tissues and Other Bioproducts. Advances in Biomechanics, 2001, Beijing, China:79-87.
    [26]. F Franks. Biophysics and Biochemistry at Low Temperatures. Cambridge University Press, New York, 1985:112-126.
    [27]. H Ishiguro, B Rubinsky. Influence of fish antifreeze proteins on the freezing of cell suspensions with cryoprotectant penetrating cells. Heat Mass Transfer, 1998,41(13):1907-1915.
    [28].王君晖,黄纯农.抗冻蛋白与细胞的低温和超低温保存.细胞生物学杂志,1996,8(3):107-111
    [29]. B Rubinsky, A Arav, A I Deviies. The cryoprotective effect of antifreeze glycopeptides from Antarctic fishes. Cryobiology, 1992, 29: 69-77.
    [30].朱化彬摘译.热滞蛋白在低温保存卵母细胞和胚胎中的应用.国外畜牧科技,1995,22(2):24-26.
    [31]. C L Ohlrichs. In vitro survival of IVF-derived embryos frozen using antifreeze proteins. Theriogenology, 1996, 45 (1): 174.
    [32]. B Leboeuf, W M C Maxwell. Survival of mouse morulae vitrified in media containing antifreeze protein type Ⅰ, Theriogenology 1997, 51: 349.
    [33]. A T Palsaz. Cryopreservation of mammalian embryos and occytes: recent advances. Biotech. Adv. 1996, 14:127-149.
    [34]. G M Fahy. Vitrification, Low Temperature Biology. The American Society of Mechanical Engineering, 1988.
    [35].肖洪海,谷雪莲,高才,李军,华泽钊.不同冻干保护剂对冷冻干燥脐带血玻璃化转变温度和冻干质量的影响.传热传质学学术会议论文集(下册),2003:761-764.
    [36] 雷鸣,华泽钊,匡延平.人类胚胎低温保存溶液EFSh40实现玻璃化工况条件的实验研究.低温工程,2001,6:32-36.
    [37]. I A de Graaf, H J Koster. Water crystallization within rat precision-cut liver slices in relation to their viability. Cryobiology, 2001,43:224.
    [38]. D R Macfralane, M Forsyth. Recent insights on the role of cryoprotective agents in vitrification. Cryobiology, 1990,27:345-358.
    [39]. J Karlsson. A Theoretical Model of Intracellular Devitrification. Cryobiology, 2001,42:154-169.
    [40]. D R Macfarlane. Physical Aspects of Vitrification in Aqueous Solutions. Cryobiology, 1987,24:181-195.
    [41]. I A Jacobsen, D E Pegg, H Starklint. Hypothermic preservation of rabbit kidneys
    
    for 48 hours using low ionic strength solutions. Cryobiology 1990, 27: 423.
    [42] J Kruuv, D Glofcheski, J Lepock. Interactions between Cryoprotectors and Cryosensitizers. Cryobiology, 1990,27:232-246
    [43] 寇正涌.细胞冷冻损伤机理的几个假说.松辽学刊(自然科学版).2000,4:12-14
    [44] K R Diller. Engineering-based contributions in cryobiology. Cryobiology, 1997,34:304-314.
    [45] 高建明,姜晓鹃,焦占,焦革莉.冷冻液平衡时间和复温时间对小鼠胚胎冷冻解冻效果的影响.北京农学院学报,2000,15(3):27-30.
    [46] A G Martinez, M Matkovic. Cryopreservation of Ovine Embryos: Slow Freezing and Vitrification. Theriogenology, 1998,49:1039-1049.
    [47]. W Armitage, S Rich. Vitrification of Organized Tissues. Cryobiology, 1990, 27:483-491.
    [48] J Karlsson, M Toner. Long-term Storage of Tissues by Cryopreservation: Critical Issues. Biomaterials 1996, 17:243-256.
    [49].方丽茹,翁文剑,沈鸽等.生物医学工程学杂志,2003,20(1):148-152.
    [50].陆军.骨库现状.医学研究生学报.2001,14(2):146-150.
    [51].许建波,张晋煜,蒋永新,袁涛,肖砚斌,彭敏.深低温骨库建立及同种异体骨与关节移植的临床应用.昆明医学院学报.2001,(4):30-31.
    [52]. X Xu, Z F Cui. Effects of Cryoprotective Agents on the Bovine Articular Chondrocyte Viability. Chem. Res, Chinese U, 2002, 18(2):109-112.
    [53]. X Xu. A study of mass transfer in cryopreservation of living tissues. PhD thesis, Oxford University (2003).
    [54].郑军华 闵志廉 朱有华.器官保存学.第二军医大学出版社,2000,9:69-71.
    [55].付兴吉 刘福纯.现代分析测试技术.辽宁师范大学出版社,1995:25-37.
    [56]. P Mahesh, B Waro, P Bustillo. Patient safety and quality assurance in HDR application of cancer treatment from the technologists viewpoint. Radiotherapy and Oncology, 1996,39, Supplement 1:S26.
    [57]. Z Lin, R Mohammed. Application of nonlinear finite strip technique to concrete deep beams. Engineering Structures, 1995,17(10):725-736
    [58]. C Riccardo, C G Mauro, F Claudio, L Barbara, M Paola. Detection of systematic errors in external radiotherapy before treatment delivery. Radiotherapy and Oncology, 1997,45(3): 271-274
    [59]. M K Tsai, H N Ho, H F Chien, P Ou-Yang, C J Lee, P H Lee. The role of B7 ligands (CDSO and CD86) in CD152-mediated allograft tolerance: a crosscheck hypothesis. Transplantation, 2004,77(1):48-54.
    [60]. J P Imredy, R MacKinnon. Energetic and Structural Interactions between d-Dendrotoxin and a Voltage-gated Potassium Channel. Journal of Molecular Biology, 296:1283-1294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700