用户名: 密码: 验证码:
1.鼻咽癌细胞系HNE1细胞膜蛋白质组分析和膜蛋白数据库的构建 2.肝脏星状细胞(HSC)细胞膜蛋白质组分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物膜是细胞结构的重要基础,大部分细胞器都是以生物膜为基础构建的,它是细胞内外,以及各亚细胞器间物质与信息交换场所,也是细胞内外因子识别的靶标所在场所。膜蛋白质组是在特定的时空里,细胞中所有膜蛋白的总和。膜蛋白质组的研究具有很重要的意义,因为它不仅有助于对细胞信号传导,细胞与细胞间的相互作用,离子以及溶液的传递的研究,同时也为疫苗研究,病理研究提供了新的方法与手段。
     鼻咽癌(Nasopharyngeal carcinoma,NPC)是高发于我国南方的一种恶性肿瘤,其发病率和死亡率均居世界首位。本文以鼻咽癌细胞系HNE1为材料,以贴壁的方式对其进行培养,满瓶后将细胞收集以低渗破膜与蔗糖密度梯度离心相结合的方法分离纯化得到质膜,并以扫描电镜对其进行了分析,证实了分离的质膜材料的可靠性。然后以裂解液抽提出质膜的全蛋白,用固相pH梯度双向聚丙烯酰胺凝胶电泳对膜蛋白进行分离,并以银染显色,得到了清晰的HNE1膜蛋白图谱。经Bio-Rad公司的PDQUEST软件进行图象分析,检测到600个左右的蛋白质点。将胶上的蛋白质点切下经脱色,原位还原和烷基化处理后,以胰蛋白酶进行酶解,再用MALDI-TOF MS和ESI-Q-TOF分析,得到了质量较好的肽质谱指纹图(PMF)和MS/MS数据,然后将其在MS-Fit中的genepeptide数据库和MASCOT的Swissprot中进行搜索从而对蛋白质点进行鉴定。我们对其膜蛋白双向电泳图谱的部分蛋白质点进行了鉴定。其中有196个蛋白点得到了归属,这些蛋白质中大部分为质膜蛋白质(92个)如Na~+-K~+-ATP酶,热休克蛋白27,整联蛋白β-8亚基,G蛋白偶联受体,丝氨酸-苏氨酸特异性蛋白磷酸酶,酪氨酸蛋白激酶受体,INT-1蛋白和载脂蛋白受体2前体等重要的膜上标志性蛋白。其中的囊纤维化跨膜传导调节物,属于整合膜蛋白,与膜上的氯离子的转运密切相关;而酪氨酸蛋白激酶受体,则是一种重要的Ⅰ类膜蛋白,与细胞和细胞之间的识别有着密切的联系。
     多年来,人们进行了大量的实验及临床研究,以探讨肝纤维化
    
    一一一一一一一一一一一一一一一二竺鲤乳一一一-___
    的可逆性。西方医学界公认肝纤维化是可逆的,而肝硬化是不可逆
    的。以分子生物学手段研究发现,中药复方861对血小板生长因子
     (PDGF)诱导的HSC增殖有很强的抑制作用,因此,本文以肝星状
    细胞为材料进行细胞膜蛋白质组学分析,以探求复方861的抗纤维
    化作用的机理。当肝星状细胞贴壁培养丰度达到70%左右时更换培养
    基,向其中加入lmg/ml的复方861合剂作用48小时,分为给药组
    和对照组分别培养(作用剂量和作用时间都是经过了不同大小和长
    短的比较之后优化选择的)。满瓶后将细胞收集以低渗破膜的方法分
    离纯化得到质膜,并以扫描电镜对其进行了分析,从电镜照片上可
    见到经低渗后,细胞膜破裂,细胞内容物流出而细胞膜有的完全破
    碎,有的形成血影状的空泡,从而证实了材料的可靠性。然后以裂
    解液抽提出质膜蛋白,用固相pH梯度聚丙烯酞胺凝胶电泳对膜蛋白
    进行分离,获得了分辨率和重复性俱佳的双向凝胶电泳图谱。运用
    Bi。一Rad公司的PDQUEST软件进行图象分析,检测到600个左右的蛋
    白质点。并对给药组和对照组进行了差异表达分析,找到了一些具
    有表达量差异的蛋白质点。选取全部的有无差异点和部分上调和下
    调的胶上的蛋白质点切下,经脱色,原位还原和烷基化处理后,以
    胰蛋白酶进行酶解,再用基质辅助激光解吸电离飞行时间质谱
     (MALD工一TOF MS)得到肤质谱指纹图,然后将PMF数据在MS一Fit中
    的genepeptide数据库中进行搜索从而对蛋白质点进行鉴定。初步
    鉴定出胶原质IV的Q亚基,低密度脂蛋白,Ly49c等一些与肝纤
    维化密切相关的蛋白质,其中胶原质IV的Q亚基属于H类膜蛋
    白,其功能与肝纤维化相关而且在给药组明显下调。这些蛋白质表
    达量的变化可能有助于我们对复方861合剂的抗肝纤维化的重要作
    用机理的了解。
The plasma membrane proteins, as the "doorbells" and "doorways" of the cell, play crucial roles to the cell function. The proteomic definition of plasma membrane proteins is an important initial step in searching for novel tumor marker proteins expressed during the different stages of cancer progression.
    Nasopharyngeal carcinoma (NPC) is a commonly occurring tumor in southern China and south east Asia, occurring as one of the top ten cancers in frequency. This project was initiated with the purpose of separating and identifying the membrane protein of a human nasopharyngeal carcinoma cell line. We purified the crude plasma membrane and validated by electron microscopy observation. After two dimensional gel electrophoresis separation, silver staining, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and ESI-Q-TOF analyses, tryptic peptide masses were searched for matches in the SWISS-PROT, NCBI and Mascot databases. Over 196 spots were identified using this approach (including 92 known membrane proteins). These proteins include those involved in regulation of gene expression, affected the signal pathway, altered the cell metabolism, inhibit or accelerate cell proliferation, induce the cell apoptosis and intervened the tumor invasion. This study of the NPC proteome, c
    oupled with similar proteome analyses of the whole cell, the normal nasopharyngeal tissues, and other nasopharyngeal carcinoma cell lines, defines the proteome of the NPC plasma membrane, which are valuable resources in studies on the differential protein expressions of human nasopharyngeal carcinoma.
    Herbal compound 861(Cpd861) is an effective compound in therapy against liver fibrosis and early hepatocirrhosis. To elucidate the antifibrotic mechanism of herbal compound 861, we employed proteomics techniques to study only the membrane proteins change in cultured rat hepatic stellate cells treated with Cpd861. Twenty five proteins that
    
    
    
    
    change in cultured rat hepatic stellate cells treated with Cpd861. Twenty five proteins that were up- and down-regulated were identified unambiguously, and the functional implications of 18 of these proteins are discussed in some detail.
引文
[1] Fleischmann, R. D., Adams, M. D., White, O., et al. Whole-genome random sequencing and assembly of haemophilus-influenzae Rd. Science, 1995, 269: 496-512
    [2] “国际人类基因组计划”完成人类基因组“工作框架图”。生物化学与生物物理进展,2000,27(4):339
    [3] 王志珍,邹承鲁,后基因组——蛋白质组研究。生物化学与生物物理学报,1998,30(6):533-539
    [4] 李林,蛋白质组学的进展,生物化学与生物物理学报,2000,27(3):227-231
    [5] Wasinger V C et al. Progress with gene-product of the Mollicutes: Mycoplasma genitalium. Electrophoresis, 1995, 16: 1090-1094
    [6] Wilkin M R et al. From proteins to Proteomics: Large scale protein identification by two-dimentional electrophoresis and amide acid analysis. Bio Thchnology, 1996, 14: 61-65.
    [7] 李伯良.功能蛋白质组学.生命的化学,1998,18(6):1-4.
    [8] 李伯良,李林,吴家睿.功能蛋白质组学.生物工程进展,1999,19(4):15-16.
    [9] O' Farrell P H. High resolution two-dimensional electrophoresis of protein. J Biol Chem, 1975, 250(10): 4007-4021
    [10] Klose J. Humangenetik, 1975, 26: 211
    [11] 俞利荣,曾嵘,夏其昌.蛋白质组研究技术及其进展.生命的化学,1998,18(6):4-9.
    [12] Wilm M. Shevchenko A. Houthaeve T. Breit S. Schweigerer L. Fotsis T. and Mann, M. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature, 1996, 379: 466-469.
    [13] Scheler C. Lamer S. Pan Z, Li X, Salnikow J. and Jungblut P. Peptide mass fingerprint sequence coverage from differently stained proteins on two-dimensional electrophoresis patterns by matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Electrophoresis, 1998, 19: 918-927.
    [14] Urquhart B L, Atsalos T E, Roach D, et al.'Proteomic contigs' of
    
    Mycobacterium tuberculosis and Mycobacterium bovis(BCG) using novel immobilized pH gradients. Electrophoresis, 1997, 18(8): 1384-1392
    [15] S. R. Penning M. J. Dunn. Proteomics.: from Protein Sequence to Function, 科学出版社, 2002年9月, P107
    [16] Michael J. Simon J. Advances in mass spectrometry for proteome analysis. Current Opinion in Biotechnology, 2000, 11: 384-390.
    [17] Roepstorff P. Mass spectrometry in protein studies from genome to function. Analytical Biotechnology. 1997, 8(1): 6-10.
    [18] Havnes P A, Gygi S P, Aebrsold R, et al. Proteome analysis: biological assay or data archive? Electrophoresis. 1998, 19: 1862-1871
    [19] Figeys D, Aebersold r. High sensitivity identification of proteins by electrospray ionization tandem mass spectrometry: initial comparison between an ion trap mass spectrometer and a triple quadrupole mass spectrometer. Electrophoresis, 1997, 18: 360-368
    [20] Henzel W J, Billeci T M, Watanae C, et al. Identigying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence database. Prooc Natl Acad Sci USA, 1993, 90: 5011-5015
    [21] Wilkins M R. Williams K L. Hohstrasser D F, et al. Proteome Research: New Frontiers in Functional Genome. New York: Springer. 1997
    [22] Chait B T, Wang R, Kent S B H, et al. Protein ladder sequencing, Science, 1993, 62: 89-92
    [23] Yales J R. Mass spectrometry and the age of the Proteome, 1998, 33: 1-19
    [24] Jungblut P. Thiede B. Protein identification from 2-DE gels by MALDI mass spectrometry. Mass Spectrometry reviews, 1997, 16: 45-62
    [25] Gaskell S L. Electrospray: principles and practice. Journal of Mass Spectrometry. 1997, 32: 677-688
    [26] Sbevcbenko A. Jensen O N. Mann M ,et al. Linking geneome and Proteome by mass spectrometry: large-scale identification of yeast proteins from two-dimensional gels. Proc Natl. Acad. Sci USA, 1996, 93: 14440-14445
    [27] Mann M, wilm M. Error-tolerant identification of peptides in sequence Uatabases by peptide sequence tags. Anal Chem, 1994, 66: 4390-4399
    [28] Latter G I, Burbeck S, Leavitt J, et al. Identification of polypeptides on two-dinensional electrophoresis gels by amino acid comparison. Clin Chem, 1984, 30: 1925-1932
    [29] Wilkins M R, Sanchez J C, Williams K L, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnology and genetic Engineering Reviews, 1995,13: 19-45
    [30] Humpbery-Smith I, Cordwell S J. Blackstock W P. Proteome research: complementanty and trantations with respect to the RNA and DNA words. Electrophoresis, 1997, 18: 1217-1242
    [31] Cordwell S J, Basseal D J, Bjellqvist B et al. Characterization of basic proteins from siroplasma melliferum using novel immobilized pH gradients. Electrophoresis, 1997, 18: 1393-1398
    
    
    [32] Gooley A A ,Ou K, williams K L, et al. A role for Edamn degradation in proteome studies. Electrophoresis. 1997. 18: 1068-1072
    [33] 陈主初,梁宋平.肿瘤蛋白质组学,湖南科学出版社,2002年9月,P110
    [34] 袁泉,赵辅昆,蛋白质组研究新前言:定量蛋白质组学,生物化学与生物物理学报,2001,33(5):477-482.
    [35] Heng Zhu, Mentn Belgin, Snyder M, et al. Globale analysis of protein activities using proteome chips. Science, 2001, 293: 2101-2105
    [36] Fields S, Song O K, A novel genetic system to detect protein-protein interactions. Nature, 1989, 840: 245-246
    [37] 甄朱,蛋白质组学进展,生物工程学报,2001,17(5):491-193
    [38].杨齐衡,李林.酵母双杂交技术及其在蛋白质组研究中的应用.生物化学与生物物理学报,1999,31(3):221-225.
    [39] Oda Y, Huang K, Cross F R, Cowburn D, Chait B T, Accurate quantitation of protein expression and site-phosphorylation. Proc. Natl. Acad. Sci. USA, 1998, 96: 6591-6596
    [40] Gygi S P, Rist B, Gerber S A, et a1. Quantitative analysis of complex protein mixtures using isotopecoded affinity tags. Nat Biotechnol, 1999, 17: 994-999
    [41] Gygi S P, Rist B, Aebersold R. Measuring gene expression by quantitative proteome analysis. Curr Opin Biotech, 2000, 11: 396-401
    [42] Unlu M, Margan M E, Minden J S. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts, Electrophoresis, 1997, 18: 2071-2077.
    [43] 郑仲承,研究蛋白质组的新工具,生命的化学,2001,21(4):314-315
    [44] 丁达夫,盛泉虎,谢涛.蛋白质组信息学.生命的化学,1998,18(6):10-16.
    [45] 曾嵘,夏其昌,蛋白质组学研究进展与趋势,中国科学院院刊,2002,3:166-169
    [46] Shigehiko Kanaya, Yoshihumi Ujiie, katumi Hasegawa, et al. Proteome analysis of Oncorhynchus species during embryogenesis. Electrophoresis, 2000, 21: 1907-1931
    [47] Luo C, Liu Y. Studies on production of gynogenetic grass carp and crucian carp. Act Sci Nat Univ Hun, 1991, 14(2): 154-159
    [48] Thorggard GH. Chromosome set manipulation and sex control. In: Hoar WS, Randall DJ, Donadlson EM (eds) Fish Physiology, Academic Press: New York. 1983, 9B, pp405-434.
    [49] C Luo. B Li, Diploid-dependent regulation of gene expression: a genetic cause of abnormal development in fish haploid embryos. Heredity, in press.
    [50] 汪家政,范明.蛋白质技术手册,科学出版社,2000年8月,P42
    [51] Bjellqvist B, Pasquali C, Ravier F, et al. Micropreparative two-dimensional eletrophoresis allowing the separation of samples containing millgram amount of proteins. Electrophoresis, 1993, 14: 1357-1365
    [52] 李小兰.蛋白质组学方法学研究与水稻花药蛋白质组的初步分析.2001.湖南师范大学硕士生学位论文.
    
    
    [53] 谢振声.水稻(Oryza sativa)幼穗减数分裂期蛋白质组的初步分析.2002.湖南师范大学硕士生学位论文.
    [54] Corbett JM, Dunn MJ, Posch A, et al. Positional reproducibility of protein spots in two-dimensional electrophoresis using immobilized pH gradient isoelectric focusing in the first dimension: an interlaboratory comparison .Electrophoresis, 1994, 15 (8-9): 1205-1211.
    [55] Fernadez J, Gharahdaghi F, Mische S M. Routine identification of proteins from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels or polyvinyl difluoride membranes using matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MADLI-TOF-MASS). Electrophoresis, 1998, 19: 1036-1045
    [56] Gharahdaghi F, Weinberg C R, Meagher D A. et al. Mass spectrometric of protein from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity. Electrophoresis, 1999, 20: 601-605
    [57] Rosenfeld J, Capdevielle J, Guillemot J C, et al. In-gel digestion of proteins for internal sequence analysis after one-or two-dimensional gel electrophoresis. Anal Biochem, 1992, 203: 173-179
    [58] Gharahdaghi F, Weinberg C R, Meagher D A. et al. Mass spectrometric of protein from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity. Electrophoresis, 1999, 20: 601-605
    [59] Jensen O N, Podtelejnikov A N, Mann M. Identification of the components of simple protein mixtures by high-accuracy peptide mass mapping and database searching. Anal Chem, 1997, 69: 4741-4750
    [60] Rabilloud T, Adessi C, Giraudel A ,et al. Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 1997, 18: 307-316
    [61] 陈平,谢锦云,梁宋平。双向凝胶电泳银染蛋白质点的肽质谱指纹图分析. 生物化学与生物物理学报 2000,32(4):387-391
    [62] Semina, E. V., Mintz-Hittner, H. A., Murray, J. C., Isolation and Characterization of a a Novel Human paired-like Homeodomain-Containing Transcription Factor Gene, VSX 1, Expressed in Ocular Tissyes. Genomics 2000, 63, 289-93.
    [63] Passini, M. A., Levine, E. M., Canger, A. K., Raymond, P. A., Schechter, N., Vsx-1 and Vsx-2: differential expression of two paired-like homeobox genes during zebrafish and goldfish retinogenesis. J. Comp. Neurol. 1997, 388, 495-505.
    [64] Kurtzman, A. L., Gregori, L., Haas, A. L., Schechtere, N., Ubiquitination and Degradation of the Zebrafish Paired-Like Homeobox Protein Vsx-1. Journal of Neurochemistry, 2000, 75 (1): 48-55
    [65] Duan, C., Ding, J., Li, Q., Tsai, W., Pozios, K., Isulin-like growth factor growth factor binding protien 2 is a growth inhibitory protein conserved in zebrafish. PNAS. 1999, 96, 15274-15279.
    
    
    [66] Argenton, F., Bernardini, S., Puttini, S., Colombo, L., Bortolusi, M., A TGACG motif mediates growth-hormone factor-1/pituitary-transcriptional-activator-1-dependent Camp regulation of the rainbow trout growth-hormone promoter. Eur. J .Biochem. 1996, 238(3): 591-598
    [67] Njolstal, P. R., Molven, A., Apold., The zebrafish homeobox gene box-2.2: transcription unit, potential regions and in situ localization of transcripts. EMBO, 1990, 9, 515-524.
    [68] Hochstrasser, M., Ubiquitin-dependent protein degragation. Annu. Rrev. Genet. 1996, 30, 405-39.
    [69] Aruga, J., Mizugishi, K., Koseki, H., Imai, K., Balling, R., Zicl regulates the patterning of vertebral arches in cooperation with Gli3. Mech. dev. 1999, 89, 141-50.
    [70] Aruga, J., rohmonda, T., Homma, S., Mikoshiba, K., Zicl promotes the expansion of dorsal neural progenitors in spinal cord by inhibiting neuronal differentiation, dev. Boil. 2002, 244, 329-41.
    [71] Gong, Z., Hui, C. C., Choy, L. Hew.,Presence of isl-1-related LIM Domain Homeobox Gene in Teleost and Their Similar Patterns of Expression in Brain and Spinal Cord. J. Biol. Chem 1995, 270 (7): 3335-3345
    [72] Bovenkamp, D. E., Greer, P., Novel Eph-family receptor tyrosine kinase is widely expressed in the developing zebrafish nervous system Dev. Dyn 1997, 209, 161-181.
    [73] Gritsman, K., Zhang, J., Cheng, S., Heckscher, E., Talbot, W. S., et al., The EGF-CFC protein one-eyed pinhead is essential for nodal signaling Cell 1999, 97, 121-132.
    [74] Zhang, J., Talbot, W. S., Schier, A. F., Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand. Cell 1998, 92, 241-251.
    [75] Dorsky, R. I.., Moon, R. T., Raible, D. W., Control of neurol crest cell fate by the Wnt signalling pathway. Nature 1998, 396, 370-373.
    [76] Anne, R. U., Gregory, M. K., Randall, T. M., Wnt-4 affects morphogenesis when misexpressed in the zebrafish embryo. Mechanisms of Development 1995, 52, 153-164.
    [77] Yarden, A., Salomon, D., Geiger, B., Zebrafish cyclin D1 is differential expressed during early embryogenesis. Biochim. Biophys. Acta. 1995, 1264, 257-260.
    [78] Li-Rong Yu, Xiao-Xia Shao, Wan-Li Jiang, Dan Xu, Yun-Chao Chang, et al. Proteome alteration in human hepatoma cell transfected with antisense epidermal growth factor receptor sequence. Electropgoresis, 2001, 22: 3001-3008
    [79] Elvir-Mairena JR, Jovanovic A, Gomez LA, Alekseev AE, Terzic A. Reversal of the ATP-liganded state of ATP-sensitive K+ channels by adenylate kinase activity. J Biol Chem, 1996, 271(50): 31903-8
    
    
    [80] Murphy M, Harte T, McInerney J, Smith TJ. Molecular cloning of an Atlantic salmon nucleoside diphosphate kinase cDNA and its pattern of expression during embryogenesis. Gene, 2000, 257(1): 139-48
    [81] Zardoyo R. Abouheif E. Meyer A. Evolutionary analyses of hedgehog and noxd-10 genes in fish species closely related to the zebrafish. Proc. Natl. Acad. Sci. 1996, 93: 13036-13046
    [82] De Blasi A, Parruti G, Sallese M. Regulation of G protein-coupled receptor kinase subtypes in activated T lymphocytes. Selective increase of beta-adrenergic receptor kinase 1 and 2. J Clin Invest, 1995, 95(1): 203-10
    [83] Mora-Ferrer C, Gangluff V. D2-dopamine receptor blockade impairs motion detection in goldfish. Vis Neurosci, 2000, 17(2): 177-86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700