用户名: 密码: 验证码:
等离子体弧三维柔性成形技术基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属板材弯曲成形技术在航空航天器、汽车、船舶、化工容器等制造业中应用广泛,传统的成形技术通常需要根据板件形状,花费大量时间和资金制造相应的工模具,在大型板件成形中,这些费用更为昂贵。研究无模具柔性成形理论与技术,对减少新产品开发成本、缩短开发周期都有重要意义,在大型板件多品种小批量成形生产中具有极大的潜在优势。尤其在汽车制造领域,利用等离子体弧柔性成形技术可以对汽车覆盖件进行柔性校正及其它异形件的成形,特别是在新款式样车的试制中,可以充分发挥其适合于单件及小批量生产的优势。
     分析金属板件无模具柔性成形技术的研究现状可以发现,利用热应力和热应变来实现板材成形在国内外逐渐成为研究的热点。因为等离子体弧与其它热源相比更经济、安全、灵活、实用,所以最近三年来等离子体弧板材柔性成形技术也引起了研究者的重视。但是目前相关工作只限于利用不锈钢板定性研究工艺参数与弯折角度的关系,考察弯折区域金相组织的变化等问题,扫描路径还局限于直线扫描,但对于具有复杂曲面(如非直线展成面)的零件,仅靠目前的直线扫描研究结果显然还难以达到要求。所以本文在直线扫描的基础上做了如下问题的研究:
     1.探讨了薄板等离子体弧柔性成形技术的成形机理,分析了温度梯度机理、屈曲机理和镦粗机理诱发原因及作用过程。
     2.建立了等离子体弧柔性成形过程的有限元热应力分析模型,并根据成形过程的热源移动的特点,将等离子体弧处理成小步距间歇跳跃式移动热源进行加载,解决了成形过程中板材的弹塑性大变形瞬态热应力问题,计算出了包括温度场分布、应力状态以及形变规律等结果。
     3.以矩形板、环形板、扇形板为例,在模拟分析的基础上,以实验的方法探索了直线扫描和曲线扫描的差异以及板材的几何形状对成形结果的影响。
     4.在大量实验研究的基础上,探索出由圆形板材加工球冠的等离子体弧扫描路径及其加工工艺方法。
     5.针对不同几何形状的板件采用不同的扫描路径对等离子体弧柔性成形规律进行了实验研究。
     综合本文以上研究结果可以发现,等离子体弧柔性成形技术不仅可以应用于板材的直线弯曲成形中,还可以应用于板材三维复杂曲面成形生产中。随着研究的不断进行,等离子体弧柔性成形技术必将在板材成形应用领域产生巨大的经济效益。
Flexible forming of sheet metal is a technique applied widely in manufacturing such as in the aerospace, automobile, shipbuilding, and chemical container industries. In traditional manufacturing field of forming for sheet metal, a lot of time and money are usually cost to produce the mould and die according to the desired shape of the product. Especially, the cost for larger sheet metal will be higher. Investigating theory and technology of flexible forming without the need for mould and die contributes to significantly decreasing the high cost and long lead-time. In the versatile varieties and small-batch production, this technique has greatly potential advantages. Especially, in automobile industry, this technique can be used in flexible repair and modification for sheet metal of automotive or shaped objects. It can play important role in trial-manufacture of new type automotive.
    By analyzing the recent investigation on flexible forming of sheet metal without mould and die, it can be found that the technology of forming for sheet metal induced by thermal stress-strain gradually become a focus of research. Compared with another heating source, plasma arc is more economical, safe, agile and practical. So in recent three years, flexible forming technology using plasma arc gradually catch investigator's attention. However, present researches on flexible forming of sheet metal using plasma arc are still limited to investigate the relationship between various process parameters and bending angle, and the microstructure development and transition in heat affecting zone of sheet metal. The scanning path is limited in straight line. However, it is difficult to obtain complex shapes such as nonlinear prolonged surface only by linear scanning. Therefore, the following issues have been investigated at the base of linear scanning in this paper:
    1. The mechanisms and characteristics of flexible forming for sheet metal using plasma arc are discussed. Temperature gradient mechanism, buckling mechanism and upsetting mechanism and causes induced are analyzed.
    2. Finite element method analytical model of thermo-elastoplastic stress during plasma arc scanning is established. The plasma arc is treated as a jumping heat source with small steps, which is loaded on sheet metal, according to its process of floating scanning. Transient response of stress and elasto-plastic large deformation are solved. Distribution of temperature field, stress state and result of deformation are calculated.
    3. At the base of simulation, the differences between linear and curved scanning, also the influences of sheet metal geometry on deformation are investigated by means of experiments, in which rectangle, ring segment and circle segment are served as specimens.
    4. The processing method and scanning path, by which circular plate is transformed into
    
    
    
    
    spherical cap using plasma arc, have been explored at the base of considerable experiments.
    5. Behaviors during forming by different scanning paths corresponding to different shape of sheet metal are investigated by means of experiments.
    In summary, it can be found that the flexible forming technology using plasma arc can be employed not only in linear bending but also in 3D complex curved surface forming for sheet metal. The technology of flexible forming for sheet metal using plasma arc will bring enormous economic benefit in the field of sheet metal forming with the development of investigation.
引文
[1] 梁炳文,陈孝戴,王志恒.板金成形性能.第一版.北京机械工业出版社,1999.5
    [2] 熊火轮,胡世光.板料成形中的计算机辅助技术.第一版.北京航空航天大学出版社,1994.7
    [3] 邓陟,王先进,陈鹤峥.金属薄板成形技术.第一版.兵器工业出版社 1993.8
    [4] 谢建新,刘静安.金属挤压理论与技术.第一版.北京,冶金工业出版社.2001
    [5] Magee J, Devin L J. Process Planning for laser-assisted forming. Journal of Materials Processing Technology, 2002, (120): 322-326.
    [6] 张仪婉,周建罗。钛合金热成形设备及工艺研究。航空制造工程,1998 (6):32-33
    [7] 徐卫平,罗家文.钢制船舶建造的水火弯板。造船技术,1998 (9):12-13.
    [8] Nomoto T. Development of Simulator for Plate Bending by Line Heating. Journal of Zosen Kyokai, 1990, Vol.168, pp527-535.
    [9] Ueda Y, Murakaw H, Mohamed R A. Development of Computer-Aided Process Planning System for Plate Bending by Line Heating. Journal of Ship Production, 1994, Vol.10, 4, pp577-586.
    [10] Moshaiov A, Shin J G Modified, Strip Model for Analyzing the Line Heating Method- Part2: ThermoElastic- Plastic Plates. Journal of Ship Research, 1991, Vol.35, 3, pp266-275.
    [11] ang C D, Moon S C. Algorithm to determine heating lines for plate forming by line heating method. Journal of Ship Production, 1998, Vol.14, 4, pp238-245.
    [12] ang C D, Seo S, Ko D E. Study on the prediction of deformations of plates due to line heating using a simplified thermal elasto-plastic analysis. Journal of Ship Production, 1997, Vol. 13, 1, pp22-27.
    [13] Rashwan A M. Prediction of heating lines for bending shell plating of ship structure: (Part Ⅰ) uniform curved surfaces. Alexandria Engineering Journal, 1998, 3, ppA 175-A 183.
    [14] Yu G, Anderson R J, Maekawa T, Patrikalakis N M. Efficient simulation of shell forming by line heating. International Journal of Mechanical Sciences, 2001, Vol.43, 10, pp2349-2370.
    [15] 刘玉君,王东,纪卓尚,邓燕萍.水火弯板工艺参数优化设计。大连理工大学学报,2000,40(2):207-209。
    [16] 汪建华,戚新海,徐磊。水火弯板的热弹塑性数值模拟。造船技术,1996,(12):13-15。
    [17] 金泉林。板热应力弯曲的若干变形规律的数值模拟研究。塑性工程学报,1999,6(4):1-8。
    [18] 董大栓,柳存根,谭家华。水火弯板计算中高斯分布热源模型各参数的实验确定。上海交通大学学报,2001,35(10):1459—1463。
    [19] 向祖权,张庆英,王呈方。基于计算机视觉的水火弯板线变形测量系统的设计与实现。武汉理工大学学报,2002,26(1):86—88,92。
    [20] 陈敦军,向毅斌,吴诗淳,李淼泉。激光成形工艺方法及其发展前景。热加工工艺,2000,(3):50-51。
    [21] 刘顺宏,万鹏腾,杨晶。激光弯曲成形数值模拟的研究进展。电加工与模具,2001,(5):28-31。
    
    
    [22] eiger M, Vollersen F. Mechanisms of Laser Forming. Ann. CRIP, 1993, Vol.42, 1, pp301-304.
    [23] Geiger M. Synergy of Laser Material Processing and Metal Forming. Ann CIRP, 1994, Vol.43, 2, pp563-570.
    [24] Vollertsen F. Model for the Temperature Gradient Mechanism of Laser bending. Laser Assisted Net Shaped Engineering, 1994, pp371-378.
    [25] Hennige T, Holzer S, Vollertsen F, Geiger M. On the working accuracy of laser bending. Journal of Materials Processing Technology, 1997, 71, pp422-432.
    [26] 季忠,吴诗淳。板料激光弯曲成形数值模拟。中国激光,2001,28 (10):953—956。
    [27] 李纬民,卢秀春,刘助柏。激光弯曲工艺中板材厚度的影响规律。中国有色金属学报,1999,9(1):39-44。
    [28] 王秀凤。激光弯曲机理的试验研究。北京航空航天大学学报,2002,28(4):473—476。
    [29] 管延锦,孙胜,赵国群,李辉平。预约束应力作用下的激光弯曲成形仿真工艺研究。中国激光,2002,29(8):755—758。
    [30] 李俐群,王威,林尚扬,邓升斌。温度梯度机理下激光参数对激光成形的影响。热加工工艺,2002,(3):35—37。
    [31] Wu S C, Ji Z. FEM simulation of the deformation field during the laser forming of sheet metal. Journal of Materials Processing Technology, 2002, 121, 269-272.
    [32] Magee J, Devin L J. Process Planning for laser-assisted forming. Journal of Materials Processing Technology, 2002, 120, pp322-326.
    [33] Kuo H C, Wu L J. Fuzzy control of a heat-bending system. Journal of Materials Processing Technology, 2002, 120, pp 186-201.
    [34] Cheng P J, Lin S C. Using neural networks to predict bending angle of sheet metal formed by laser. International Journal of Machine Tools and Manufacture, 2000, Vol.40, 8, pp1185-1197.
    [35] Dragos V, Dan V, Kovacevic R. Prediction of the laser sheet bending using neural network. Proceedings - IEEE International Symposium on Circuits and Systems, 2000, 3, pp Ⅲ686-Ⅲ689.
    [36] Chan K C, Liang J. Laser bending of A16013/SiC_p aluminium matrix composite sheet. Journal of Materials Processing Technology, 2000, 1, pp214-218.
    [37] Marya M, Edwards G R. Study on laser forming of near-alpha and metastable beta titanium alloy sheet. Journal of Materials Processing Technology, 2001, 3, pp376-383.
    [38] 陈敦军,吴诗淳等。钛合金板材激光弯曲成形研究。航空学报,2001,22(2):187—189。
    [39] Hermige T. Development of irradiation strategies for 3D-laser forming. Journal of Materials Processing Technology, 2000, 103, pp102-108.
    [40] 刘顺洪,周龙早,王令红,林武。金属板材三维激光弯曲成形的研究。航空制造技术,2001,(4):42—43。
    [41] 黄晨光,段祝平。激光微弯曲成形机理的数值研究。中国激光,2002,29(3):281—285。
    
    
    [42] Kuo H C, Wu L J. Fuzzy control of a heat-bending system. Journal of Materials Processing Technology, 2002, (120): 186-201.
    [43] 季忠,吴诗淳.板料激光弯曲成型数值模拟.中国激光,2001,28(10):953-956.
    [44] 徐卫平,罗家文.钢制船舶建造的水火弯板.造船技术,1998(9):12-13.
    [45] 管延锦,季忠,郝滨海,孙胜.材料性能参数对板料激光弯曲成形的影响.激光加工,2001,12(1):87-90.
    [46] 管延锦,孙胜,栾贻国,赵国群.扫描次数对板料激光弯曲成形影响的实验研究.光电子·激光,2002,13(11):1163-1166.
    [47] 季忠,吴诗停.板料激光弯曲成形的技术参数研究.模具技术,1998 (1):3-7.
    [48] 王勖成,邵敏编著.有限单元法基本原理和数值方法.第二版.北京:清华大学出版社,1996:1-2.
    [49] 刘建生,陈慧琴,郭晓霞.金属塑性加工有限元模拟技术与应用.第一版.北京,冶金工业出版社,2003.1:10-11.
    [50] 翁中杰.传热学.上海:上海交通大学出版社,1987.
    [51] 曹玉璋.传热学.北京:北京航空航天大学出版社,2001.
    [52] 刘高琠.温度场的数值模拟.重庆:重庆大学出版社,1990.
    [53] 王补宣.工程传热传质学(上册).第一版.北京:科学出版社,1982.
    [54] 孔样谦.有限单元法在传热学中的应用.第三版.北京:科学出版社,1998.
    [55] 严宗达,王洪礼.热应力。北京:高等教育出版社,1993.
    [56] 卓家寿.弹性力学中的有限元法.北京:高等教育出版社:1987.
    [57] 黄义.弹性力学基础及有限单元法.北京:冶金工业出版社,1983.
    [58] ANSYS Theory Manual, Release 5.5,ANSYS Inc., USA, 1998
    [59] 赵铁军,赵文珍.等离子弧加工的热过程分析与温度计算.沈阳工业大学学报,2002 (4):287—289.
    [60] 机械工程材料性能数据手册/《机械工程材料性能数据手册》编委会编.北京:机械工业出版社,1994.12
    [61] Male A T, Pan C X, Chen Y W, Li P J, Zhang Y M. Processing effects in plasma forming of sheet metal. Annals of the CIRP, 2000, Vol.49, 1, pp213-216.
    [62] Male A T, Li P J, Chert Y W, Zhang Y M. Flexible forming of sheet metal using plasma arc. Journal of Materials Processing Technology, 2001, Vol. 115, pp61-64.
    [63] Male A T, Chen Y W, Pan C, Zhang Y M. Rapid prototyping of sheet metal components by plasma-jet forming. Journal of Materials Processing Technology, 2003, Vol. 135, pp340-346.
    [64] 潘春旭,Yuming Zhang, Alan T. Male 等离子电弧薄板柔性成形技术及工艺特性.中国机械工程,2003,14(1):75~78
    [65] 陈敦军,龙丽,吴诗淳等,板料激光曲线弯曲成形的数值模拟,中国机械工程,2003,14(13):1152~1154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700