用户名: 密码: 验证码:
苯基荧光酮沉淀捕集—石墨炉原子吸收法测定痕量镓、锗、钼和铟的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在综述沉淀和共沉淀分离富集法的应用和进展的基础上,根据有机沉淀剂的优点和有机试剂能用于酸性溶液及不需要载体离子沉淀捕集痕量元素的新特点,试将苯基荧光酮开发为一种新的有机沉淀捕集剂,对苯基荧光酮沉淀捕集-石墨炉原子吸收法测定痕量镓、锗、钼和铟做了以下的工作:
     1 对苯基荧光酮沉淀捕集痕量镓的富集条件进行优化,比较了Ni、Mg基体改进剂对镓的灰化和原子化过程的影响,选用Ni基体改进剂,提高测定的灵敏度,消除基体干扰。该法能很好的捕集水样,锌精矿和人工合成锌样中的痕量镓。方法检出限为0.027ng/mL,方法精密度为2.0~3.4%,富集倍数为20至6×10~2,测定国家一级标准物质GBW07405和GBW07107中的痕量镓,测定值与标准值相吻合。
     2 研究了苯基荧光酮沉淀捕集痕量锗的方法,优化了富集条件和测量条件,自制涂钨石墨管,选用La基体改进剂,提高测定灵敏度,消除干扰。将该法引入到水样,人工合成锌样,市售螺旋藻中的痕量锗的测定,取得满意结果。方法检出限为0.30ng/mL,方法精密度为4.9~5.9%,富集倍数为20至6×10~3,测定国家一级标准物质GBW007405和GBW07107中的痕量锗,测定值与标准值相吻合。
     3 研究了苯基荧光酮沉淀捕集痕量钼的方法。比较了Ni、NaF、CaF_2、CaCl_2、EDTA对钼测定的增敏作用,选用CaF_2作基体改进剂,探讨了CaF_2的增敏机理。该法能很好的捕集水样,铜精矿中的痕量钼。方法检
    
     中文摘要
    出限为0.046 ng/mL,方法精密度为3.1~4 .0%,富集倍数为40至4XI护,
    测定国家一级标准物质GBW007405和GBW07 103中的痕量相,测定值
    与标准值相吻合。
     4研究了苯基荧光酮沉淀捕集痕量锢的方法,尝试用Ag作基体改进
    齐lJ,消除基体干扰。该法对水样,锌精矿中的痕量锢的测定,收到很好
    的效果。方法检出限为2.sng/mL,富集倍数为4至2 x 10,。
     5探讨了苯基荧光酮对稼、锗、钥和锢的增敏作用及捕集机理,表明
    经沉淀、陈化的苯基荧光酮增敏作用更明显,捕集稼、锗、钥和锢以后
    沉淀为主,稼、钥伴有共沉淀。
On the basis of a review of the application and progress in precipitation and co-precipitation method in separation of trace element, according to the merits of organic reagent and the new characteristic that organic reagent can be applied to acid solution and trap trace elements without carriers, this thesis would attempt to develop phenyl fluorone to be a new organic precipitant. The following aspects were investigated in the thesis:
    1 The conditions of trapping trace gallium by precipitation with phenyl fluorone were optimized. The influences of gallium during the ash and atomization stage were compared using Ni and Mg as matrix modifiers. Using Ni as matrix modifiers, sensitivity was increased and matrix interferences were overcome effectively. The method can be used to trap trace gallium in water samples, zinc concentrate and artificial zinc samples. The detection limit was 0.027ng/mL; the precision was between 3.1~4.0%. The enrichment multiple was from 20 to 6 102. Measured values of gallium in national standard reference samples GBW07405 and GBW07107 by the above-mentioned method were in good agreement with certified values.
    2 A method of trapping trace germanium by precipitation with phenyl fluorone was studied. The conditions of enrichment and measurement were optimized. With specially-made graphite tube coated with W, and La as matrix modifiers, sensitivity was increased and matrix interferences were effectively eliminated. The method can be used to trap trace germanium in water samples, artificial zinc samples and spirulina. The detection limit was
    
    
    
    0.03ng/mL and the precision was between 4.9-5.9%. The enrichment multiple was from 20 to 6 103. Measured values of gallium in national standard reference samples GBW07405 and GBW07107 by our established method were in good agreement with certified values.
    3 A method of trapping trace molybdenum by precipitation with phenyl fluorone was studied. The conditions of enrichment and measurement were optimized. The enhancement effect of Ni, NaF, CaF2, CaCl2, EDTA in the determination of molybdenum was studied. The mechanism of CaF2 sensitivity enhancement when it is used as matrix modifiers is discussed. The method can be used to trap trace molybdenum in water samples and copper concentrate. The detection limit was 0.046ng/mL and the precision was between 3.1~4.0%. The enrichment multiple was from 40 to 4 X 102. Measured values of molybdenum in national standard reference samples GBW07405 and GBW07103 by our established method were in good agreement with certified values.
    4 A method of trapping trace indium by precipitation with phenyl fluorone was studied. Ag was tested as matrix modifier and found to be effective in eliminating the matrix interferences. The method can be used to trap trace indium in water samples and zinc concentrate. The detection limit was 2.5ng/mL.The enrichment multiple was from 4 to 2 103.
    5 The sensitivity-enhancing effect and precipitation mechanism of phenyl fluorone in the process of trapping gallium, germanium, molybdenum and indium were studied. The results showed that the phenyl fluorone which had been precipitated and aged had more distinct sensitivity-enhancing effect; the precipitation process was mainly post-precipitation, with partial co-precipitation of gallium and molybdenum.
引文
[1] 《化学分离富集方法及应用》编委会,化学分离富集方法及应用,中南工业大学出版社.1997:3-4。
    [2] 日本化学会编,新实验化学讲座9:分析化学,东京,丸善株式会社,1977。
    [3] 刘锦春,痕量分析Ⅶ:痕量物质的富集及分离(一),痕量分析,1989,5(1):64-65。
    [4] 《化学分离富集方法及应用》编委会,化学分离富集方法及应用,中南工业大学出版社,1997:30-38。
    [5] 张孙玮,有机试剂在分析化学中的应用,北京,北京科学出版社,1981: 121-157。
    [6] 张波,沉淀和共沉淀分离,洛阳医专学报,1996,15(4):286-288。
    [7] Jackwerth E., Pure and Appl.Chem., 1979, 51: 1149.
    [8] 苏耀东,张冰如,夏青等,共沉淀分离富集法的应用和进展,理化检验.化学分册,1999,35(5):236-241。
    [9] Henens C H, Elson C M, Determination of microgram amounts of zirconium in geological materials by coprecipitation with inn (Ⅲ)hydroxide and X-ray fluorescence spectrometry, 1988, 113 (1):197-199.
    [10] 石玉明,氢氧化铁沉淀分离富集催化极谱法测定高纯铜中的硒,冶金分析,1997,17(1):49。
    [11] 唐华应.氢氧化铁共沉淀分离DAPM光度法测定五氧化二铁中的微量钛,有色金属于稀土应用,1995,2:40-42。
    [12] Eltageb Mohamed A H, Van Grieken Rene E, Coprecipitation with aluminium hydroxide and X-ray fluorescene determination of trace metals in water, Analytica Chimica Acta, 1992,268:177-183.
    [13] Chi Ren Lan, Direct determination of Ca in sea-water by electrothermal atomic absorption spectrometry with solium hydroxide as a chemical modifier, Analyst, 1993, 118 (1) :189-192.
    [14] Yoshimura W,Uzawa A,分析化学(日),1997,46(2):113.
    [15] Harada Y. Kurata N, Fururo Gl,分析化学(日),1990,39(1):49.
    [16] Ueda J, Mizuic, Preconcemtration of gallium (Ⅲ) and indium (Ⅲ) by coprecipitation with hafnium hydroxide for electrothermal atomic absorption spectrometry. Anal Sci, 1988, 4, 417.
    [17] Ueda J, Kitadani T, Separation and concentration of beryllium by coprecipitation with hafnium hydroxide prior to determination by graphite furnace atomic absorption spectrometry , Analalyst, 1988,113 (4): 581-583.
    
    
    [18] Akagi T, Harayuchi H, Simulaneous multielement determination of trace metals using 10mL of seawater by inductirely coupled plasma atomic emissioin spectrometry with gallium coprecipitation and microsampling technique, Anal Chem, 1990, 62(1):81-85.
    [19] Taleta K, Akamatsu C, Determination of manganese by electrothermal atomization atomic absorption spectrometry following coprecipitation with yttrium hydroxide, Anal Chim Acta, 1994, 298(3):375-379.
    [20] Hiraide M, Chen Z S, Sugimoto K, Coprecipitation with tin (Ⅳ) hydroxide followed by removal of tin carrier for the determination of trace heavy metals by graphite furnace atomic absorption spectrometry, Anal Chim Acta, 1995, 302(1):103-107.
    [21] Torrades F, Garcia Raurich J, Study of the coprecipitation of calcium, potassium, sodium and chloride with barium sulfate using atomic spectrometry and visible spectrophotometery, Analyst, 1993, 118(2):197-200.
    [22] Okutani T, Tanaka C, Yamaguchi Y, Determination of fluoride in natural waters by ion-selective electrode potentionmetry after co-precipitation with aluminum phosphate, Talanta, 1989, 36(10):973-976.
    [23] Nakamura T, Oka H, Direct atomization atomic absorption spectrometric determination of Be, Cr, Fe, Co, Ni, Cu, Cd and Pb in water with zirconium hydroxide coprcipitation, Analys, 1994, 119 (6) :1397-1401.
    [24] 齐文启,陈树榆,用DDTC-Mn~(2+)共沉淀分离无火焰原子吸收测定天然水中痕量Cr~(3+)和Cr~(6+),光谱学与光谱分析,1990,10(4):46-48。
    [25] Eckert J M, Leggett K E A, Coprecipitation of manganese from marines sediment pore water for X-ray fluorescence spectrometry, Analytica Chimica Acta, 1989, 222: 169-175.
    [26] 苏耀东,边永强,APDC-Cu(Ⅱ)共沉淀分离富集微量注射进样FAAS测定酱油中的痕量铅,理化检验-化学分册,1992,28(20):67-69.
    [27] Nukatsuka I, Munakata T, Solid-phase spectrophotometric determination of niobium in rocks after coprecipitation with iron quinolin-8-olate, Analyst, 1993, 118 (8) :1071-1075.
    [28] 苏耀东,边永强,酱油中痕量镉的共沉淀分离富集原子吸收法进行测定,分析化学,1992,20(6):698-699。
    [29] 苏耀东,陈俊,PAN共沉淀分离富集微量注射进样FAAS测定人发中痕量镉,光谱学与光谱分析,1992,12(3):101。
    [30] Fregge Ch, Jackwerth E, Systematic investigation of multi-element preconcentration from copper alloys by carbamate precipitation before atomic absorption spectrometric analysis, Anal Chim
    
    Acta, 1993, 271: 299-304.
    [31] 罗淑梅,王迎新,张华,有机共沉淀-GFAAS法测定高纯氧化镧、氧化钇中微量钴和镍.分析化学,1991,19(9):1043-1045。
    [32] Vircavs M, Pelne A, Rone V, Oxidation Product of Ammonium Pyrrolidin-1-yldithioformate as a Coprecitator for Preconcentration of Vanadium Cobalt Zinc Arsenic Iron Cadmium Selenium and Mercury From Aqueous Solution, Analyst, 1992, 117: 1013-1016.
    [33] Vircavs M, Pelne A, Rone V, Coprecipitation behaviour of5,8-polyquinolyl polydisulphide for trace element preconcentration from aqueous solution, Analytica Chimica Acta, 1994, 299 (2): 291-298.
    [34] 肖红玺,苏耀东,王玉科等,共沉淀分离富集原子吸收光谱法测定氯化物中痕量镉,理化检验-化学分册,2003,39(1):18-21。
    [35] J Ruzicka, E.H.Hansen, Flow inject analysis part Ⅰ : A new concept of fast continuous flow inject analysis, Anal.Chim.Acta, 1975, 78: 145.
    [36] 董立平,方肇伦,痕量钴、镍和镉的流动注射在线共沉淀预浓集的研究及其FAAS测定.光谱学与光谱分析,1994,14(1):85-87。
    [37] Fang Z L , Sperling M, Welz B, Flow inject on-line sorbent extraction preconcentration for GFAAS, J Anal AT. Spectrom, 1991, 6: 301-308.
    [38] 董立平,方肇伦,FI双硫腙在线共沉淀预浓集GFAAS测定人血中微量镉.分析实验室,1992, 11(6):5-9。
    [39] Chen H W, Xu S K, Fang Z L, ETAAS determination of molybdenum in water, human hair and high purity reagents with Flow injection on-line coprecipitation preconcentration, J Anal. AT.Spectro, 1995, 10: 533.
    [40] Tao G H, Hansen E H, Determination of Ultra-trace amounts of selenium (Ⅳ) by FI-HGAAS with on-line preconcentration with canthanum hydride, Analyst, 1994, 119: 333-338.
    [41] Zou H F, Xu S K, Fang Z L, Determination of volatile hydride-forming metals in steel by AAS, AT. Spectrosc, 1996, 17: 112-119.
    [42] Zhang Z X, Wang X R, Yang P Y et.al, Flow injection on-line preconcentration with chelating resin CPPI for multi-element determination water samples using ICP-AES, Appl Spectrosc, 1994, 39 (4): 101-108.
    [43] Akatsuka K, Atsuya I, Preconcentration by coprecipitation of submicrogram amounts of copper and manganese with s-quinolinol and direct electrothermal atomic absorption spectrometry of the precipitates, Anal Chim Acta, 1987, 202 (16) :223-230.
    
    
    [44] 刘锦春,痕量分析Ⅷ:痕量物质的富集及分离,痕量分析,1989,5(1):67-68。
    [45] Eckert J M, Coprecipitation of manganese from marine sediment pore waters for X-ray fluorescence spectrometry, Anal Chim Acta, 1989, 222:169-175.
    [46] Atanassova D, Stefanova V, Russeva E, Co-precipitative Pre-concentration with Sodium Diethyldithiocarbamate and ICP-AES Determination of Se, Cu, Pb, Zn, Fe, Co, Ni, Mn, Cr and Cd in Water, Tatanta, 1998, 47: 1237-1240.
    [47] 胡斌,江祖成,曾云鄂,原子光谱分析中的预分离富集技术-共沉淀和电化学富集,痕量分析,1990,(3~4):13-16。
    [48] 徐宝玲,林杏彬,邱承娟,氢化物-原子荧光法测定高纯铜中硒和碲,分析化学,1988,16(10):921-923。
    [49] 苏耀东,冉红峰,赵维民,APDC共沉淀分离富集-FAAS法测定明矾中的痕量铅,光谱实验室,1997,14(5):21-25。
    [50] Latif E, Ugur S, Sibel O, Determination of trace amounts of some metals in samples with high salts conent by AAS after cobalt-diethyiocarbamate coprecipitation, Talanta, 1997, 44: 1017-1021.
    [51] 武汉大学主编,分析化学(第四版),北京:高等教育出版社.1998:189-190
    [52] 《化学分离富集方法及应用》编委会,化学分离富集方法及应用,长沙:中南工业大学出版社,1997:30-38。
    [53] 段群章,苯基荧光酮类试剂在稀有金属光度分析中的应用新进展,冶金分析,1995,15(3):35-39。
    [54] J 明切斯基,J.查斯托斯卡,J.戴齐斯基,无机痕量分析的分离和预富集方法,北京:地质出版社,1986:56-57。
    [55] 刘毅,铜矿石中微量镓的测定,江西有色金属,1991,5(4):245-247。
    [56] 李景捷,万旭辉,邓昌莉等,乙基罗丹明B萃取光度法测定痕量镓,北京科技大学学报,1996,18(3):236-240。
    [57] 罗守宽,罗丹明B苯乙醚萃取光度法测定钢中镓,四川有色金属,1991,(4):50-53。
    [58] 孙善忠,车间空气中镓的分析方法研究:罗丹明B比色法,工业卫生与职业病,1990,16(4):239-243。
    [59] (日)上野景平,今村寿明,(美)程广禄著,王镇蒲,王镇埭译,有机分析试剂手册,北京:地质出版社,1985:716-734。
    [60] 张妮娜,邹洪,邰超等,镓的光度分析近况,稀有金属,2002,26(4):295-298。
    
    
    [61] 魏宏,杨正伟,钕铁硼永磁合金中微量镓的光度测量,硼磁性材料及器件,1997,28(3):60-62。
    [62] 赵兴茹,刘保生,丁良等,丁基罗丹明B-四溴荧光素双荧光剂萃取荧光法测镓,分析化学,1997,25(5):619。
    [63] Agrawal Y K, Bhatt V J, Observation on the spectrophotometric and atomic absorption deermination and atomic absorption determination of gallium in biological and alloy samples, Microchem J, 1991, 44 (3): 258-263.
    [64] Davidson R A,Harbuck D D,Hammargren D D.A Rapid Method for the Determination of Gallium and Germanium in Solid Samples by AAS.At Spectrosc, 1990, 11 (1): 7.
    [65] 米瑞华,镓的原子吸收光谱分析进展,岩矿测试,1996,15(1):53-57。
    [66] Shan Xiaoquan, Wang Wen, Wen Bei, Determination of Ga in coal fly ash by eletrothermal AAS using slurry sampling and nickel chemical modification, J Anal At Spectro, 1992, 7 (5): 761.
    [67] Takewa F, Kuroda R, Determination of Ga in geological materials by GFAAS, Talanta, 1988, 35 (9): 737-740.
    [68] Simpson R T, A graphite furnace AAS method for the determination of Ga in nickel alloy, At Spectrosc, 1989, 10(3):82-86.
    [69] 袁智能,基体改进效应石墨炉AAS测定环境和生物样品中的镓,应用化学,1986,3(6):83。
    [70] Barroo D C, Haynes B W, Determination of gallium phosphorus flue dust and other materials by AAS, Analyst, 1986, 111 (1): 19-23.
    [71] 余煜棉,张俊洁,莫生均,溶剂萃取石墨炉原子吸收光谱法连续测定地质样品中金、银、镓、铟,光谱学与光谱分析,1996,16(13):99-104。
    [72] Atomic Absorption Spectroscopy Analytical Methods , PerkinElmer Corporation , 1996.
    [73] 邓勃,我国原子吸收光谱分析技术发展30年回顾(2),分析仪器,2001,(4):1-8。
    [74] [日]水池敦,富集技术的概貌,无机痕量分析的富集技术,北京:中国环境科学出报社,1986:6-7。
    [75] Nadhum A N A, Fahil J, Some observation on the determination of gallium in aluminum alloys by direct solid-sampling and furnace AAS with graphite cup atomizers, Microchem J, 1989, 40 (2): 187-192.
    [76] 岩石矿物分析编写小组,岩石矿物分析,地质出版社,1978,8:573-577。
    
    
    [77] 周令治,邹家炎,稀散金属近况,稀有金属与硬质合金,1994,116:10-14。
    [78] 耿征,张金桂,化学发光法测定痕量锗的研究及应用,分析实验室,1990,9(5):6-8。
    [79] Egorova L A, Awamenko L I., Spectrophotometric Determination of Germanium in Inustrial Wastewater, Khim.Tekhnol.Vody., 1991, 13(7): 630-631.
    [80] 邵明智,水杨基荧光酮-溴化十六烷基三甲基铵分光光度法测定微量锗,地质实验室,1989,5(3):151-154。
    [81] Pina G L, Castro D,Dorokhova E N, Indirect Determination of Germanium in Minerals and Their processing products, Zh.Anal.Khim., 1990, 45(1): 169-173.
    [82] 陆龙根,钱亚玲,吴立仁,回流装置酸消化萃取比色法测定大葱中锗,营养学报,1992,14(4):426-429。
    [83] 史建波,董纪珍,谭春华等,流动注射在线共沉淀分离富集HG-AFS测定痕量锗,理化检验-化学分册,2001,37(8):357-359。
    [84] 罗永善,赵风泽.沈刚哲,锗的分析概况,广东微量元素科学,1998,5(3):1-23。
    [85] 瞿庆洲,硒锗光度分析新进展,鞍山钢铁学院学报,1994,17(4):8。
    [86] 陈青川,杨惠芬,锗的光度分析进展,光谱实验室,1994,11(6):25-37。
    [87] 沈含熙,十年来我国无机光度分析的成就和进展,冶金分析,1992,12(1):6-17。
    [88] 何应律,赵锦端,徐小卫,溶剂浮选分光光度法测定痕量锗的研究,岩矿测试,1990,9(1):42-44。
    [89] 徐勉懿,潘祖亭,PLS-分光光度法同时测定锗、铌、钼、钛的化合物体系,冶金分析,1993,13(2):4-6。
    [90] 李美娣,骆红山,锗的分析现状,化学世界,1995,5:231-235。
    [91] M Studnicki, Determination of germanium, vanadium and titanium by carbon furnace atomic absorption spectromtry, Anal Chem, 1980, 52: 1762-1768.
    [92] 姚金玉,衬钽管石墨炉原子吸收法测定锗的研究,痕量分析.1991,7(1):41-44。
    [93] 陈则树,塞曼原子吸收直接测定超痕量锗,分析化学,1991,19(12):1405-1407。
    [94] Hocquellet P, Direct determination of tin at ultratrace levels in edible oils and fats by atomic absorption spectrometry with elcetrothermal atomization, At Spectrose, 1985, 6 (3): 65-69.
    [95] 郭军华,石墨炉原子吸收法测定生物体液中有机锗,光谱学与光谱分析,1993,13(3):57-61。
    [96] 徐东群,石墨炉原子吸收法测定血清中锗十一种基体改进剂作用的研究,光谱学与光谱分析,1994,14(6):77-81。
    [97] 姚金玉,石墨炉原子吸收法中硝酸钙作为基体改进剂的作用,光谱学与光谱分析,1991,11(3):45-50。
    
    
    [98] 鲍长利,甲基异丁酮-N,N-二甲基甲酰胺萃取石墨炉原子吸收法测定生物样品中的痕量锗,分析化学,1992,20(4):429-432。
    [99] 陈晓青,锌电解液中痕量锗的极谱测定,湖南冶金,1990,(5):38-41。
    [100] 鲍长利,连洪洲,陈博等,石墨炉原子吸收光谱法测定生物样品中微量的锗,理化检验-化学分册,2001,31(12):537-538。
    [101] 郑衍生,张大雷,涂钨石墨管石墨炉原子吸收光谱法测定锗,分析测试通报,1988,7(6):41-43。
    [102] 林淑钦,金属涂层管对微量砷的测定研究,光谱学与光谱分析,1999,19(1):81-83。
    [103] 郑衍生,石墨炉原子化器中原子化过程的研究-高氯酸对锗和锂的干扰,高等学校化学学报,1988:9(2)。
    [104] A.N.Saidel,W.K.Prokofjew, S.M.Raiski, SPEKTRALTABALLEN TABLES OF SPECTRUM LINES TABLES DES RAIES SPECTRALES,VEB VERLAG TECHNIK BERLIN,1955.
    [105] GB/T8538-1995中华人民共和国国家标准饮用天然矿泉水检验方法,北京:中国标准出版社, 1996:61-63。
    [106] 岩石矿物分析编写小组,岩石矿物分析.地质出版社,1978,35:540-541。
    [107] 《化学分离富集方法及应用编委会》编著,化学分离富集方法及应用,中南工业大学出版社,1997:45。
    [108] 李玉玲,辉钼矿单矿物化学全分析,岩矿测试,1989,8(3):167-172。
    [109] 容庆新,李焕燃,钟志光,微量钼的硅胶—TBP萃取层析分离与测定,理化检验-化学分册,1987,23(4):206-207。
    [110] 李焕燃,容庆新,李俊兴,硅胶-TBP萃取层析连续分离与测定微量钼、锡,分析化学,1990,18(1):53-56。
    [111] 中国环境监测总站编著,土壤元素的近代分析方法,北京:中国环境出版社.1992:142。
    [112] 赵康,吴扬,张桂凤,人发中钼测定与含量水平,理化检验-化学分册,1997,(10):462-463。
    [113] 吴辛友,张四安,水杨基荧光酮-溴代十六烷三甲基铵光度法测定钽铌中痕量钨和钼,分析化学,1994,22(5):536。
    [114] 顾正康,陆忠娥,陆雍华等,ELTA萃取分离氨水反萃取原子吸收光谱法测定铸铁中的钼,光谱学与光谱分析,1993,13(2):67-70。
    [115] 吴晨光,田春芳,原子吸收光谱法测定精对苯二甲酸中的钼,理化检验-化学分册,1996,
    
    32(1):18-19。
    [116] 徐天源,苏文周,丘奕昌,GFAAS法测定天然饮用矿泉水的钼,分析测试学报,1994,13(3):54-58。
    [117] 高振宗,李玉琴,氟化钙增敏GFAAS法测定人发和血清样品中痕量钼的测定,分析实验室,1995,14(3):77-79。
    [118] 曾得国,平台石墨炉原子吸收法测定人肝组织中微量钼,理化检验-化学分册,1993,29(1):23-24。
    [119] 王仲华,石墨炉原子吸收法测定饲料中的痕量钼,光谱实验室,1993,10(1):27-29。
    [120] Scanez V M, Bagur G M, Determination of tin, vanadium, iron and molybdenum in various matrices by absorption spectrom, J. Anal.Toxicol, 1999, 23 (2): 108-112.
    [121] 李玉琴,邓宏筠,原子吸收分析应用手册,北京:科学技术出版社,1985:134-137
    [122] 李梅,彭润中,原子吸收中的基体改进剂,分析化学译刊,1989,6(6-7):145-150。
    [123] 王光明,郭德济,焦传英等,石墨炉原子吸收光谱法测定硅铁合金中的钼,华东冶金学院学报,1998,15(4):327-348。
    [124] 龙来寿,奚长生,稀散金属镓、铟的富集与分离,广州化工,2002,30(4):34-37。
    [125] 岩石矿物分析编写小组,岩石矿物分析,地质出版社,1978,8:737-738。
    [126] 王耐冬,徐素君,陈义镛,镓在氨基吡啶树脂上的吸附行为及机理,高等学校化学学报,1989,10(8):863-864。
    [127] 周景道,沈求一,沈乃葵,分光光度法测定铟的新进展,湖北煤师院学报,1996,17(4):78-82。
    [128] 吴曼君,TBP萃淋树脂色谱分离分光光度法测定硫化矿中痕量铟和铊,岩矿测试,1988,7(2):107-111。
    [129] 何志安,巯基棉富集—PF-CPB光度法测定 微量铟,分析实验室,1988,7(3):53-53。
    [130] 缪礼信,伍先任,溶剂萃取原子吸收法连续测定地质样品中的镓、铟、铊,分析化学,1988,18(10):918-922。
    [131] 程信良,鲍长利,郭旭明,涂钼石墨炉原子吸收法测定镓、铟、铊热蒸法行为的研究,分析化学,1994,22(5):512-516。
    [132] Shah Xiaoquan, Yuan Zhineng, Ni Zheming, Determination of indium in minerals, river sediments and coal fly ash by electrothermal atomic absorption spectrometry with palladium as a matrix modier, Anal. Chim. Acta, 1985, 171: 269-273.
    
    
    [133] 邱德仁,原子光谱分析,上海:复旦大学出版社:257-258。
    [134] 鲍长利,程信良,郭旭明,涂钼石墨管石墨炉原子吸收法测定地质样品中微量镓、In、铊,长春地质学院学报,1995,25(2):232-236。
    [135] 吴水生,王修林,张孙玮,苯芴酮,理化检验-化学分册,1978,4:37~42。
    [136] 程广禄,上野景平,今村寿明著,有机分析试剂手册。北京:地质出版社,1985:8-23。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700