用户名: 密码: 验证码:
低温放电等离子体在水处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温等离子体水处理技术是近20年兴起的新型水处理高级氧化技术。因其处理效率高、操作简便、与环境兼容等优点引起了研究者的广泛关注。它能在常温常压下,通过放电反应直接或间接产生羟基自由基,紫外线和高能冲击波,从而有效降解难生化降解的污染物。我们应用辉光放电电解等离子体技术对水溶液中苯酚类物质进行降解,研究了其中间产物和动力学规律。
     论文由六章组成:
     第一章 介绍了等离子体的概念,讨论了应用等离子体降解水中有机有毒物质的原理,并对就放电等离子体水处理的几种典型工艺及原理及其发展趋势作一介绍。
     第二章 以邻氯苯酚溶液模拟废水,采用接触辉光放电产生的等离子体对其进行了降解研究。考察了浓度、电压、pH值、催化剂等外界条件对降解速率的影响,并探讨了降解机理。
     第三章 以菲的水溶液为模拟多环芳烃废水,采用接触辉光放电产生的等离子体对其进行了降解研究。考察了浓度、电压、pH值、催化剂等外界条件对降解速率的影响,并探讨了降解机理。
     第四章 通过实验,我们对传统的接触辉光放电等离子体反应器进行了改进,以苯酚为模拟废水,从放电的稳定性,降解效果等方面评价了改进效果,并研究了降解动力学规律和降解机理。
     第五章 研究了对硝基甲苯在改进型的等离子体装置中的降解行为,重点探讨了对硝基甲苯降解机理。
     第六章 总结了接触辉光放电等离子体水处理技术的特点与水处理过程中的共同点。
Plasma processes are among the emerging technologies for water treatment that were originated from the early 1980's. They have received extensive attentions of the researchers both home and abroad because of their high degradation efficiency, instrumental simplicity, and amenability to the environment. They can produce the powerful oxidizing free radicals to degrade the organic compounds and kill bacteria or virus in water through discharge under ordinary conditions.
    This paper includes six chapters:
    The chapter 1 reviews the application of low temperature discharge plasma technology in the treatment of water.
    Chapter 2 describes the degradation of o-chlorophenol by plasma in a contact glow discharge electrolysis reactor, and also the influence of the initial concentration, pH on the reaction kinetics.
    Chapter 3 provides the degradation of phenanthrene by plasma with contact glow discharge electrolysis, and discusses the influence of the initial concentration, pH and different mediums of phenanthrene on the reaction kinetic was investigated.
    Chapter 4 demonstrates a modified contact glow discharge electrolysis reactor and evaluates the modification in various aspects.
    Chapter 5 further studies the degradation of 4-Nitrotoluene by plasma with direct glow discharge electrolysis, and the influence of the initial concentration, pH on the reaction kinetic was investigated, focusing the mechanistic aspects.
    Chapter 6 summarizes the characteristics of CGDE and the common points in the degradation of organic compounds in water.
引文
[1] M. A. Malik, A. Ghaffar and S. A. Malik, Water purification by electrical discharges, Plasma Sources Sci. Technol. 10(2001) 82-91
    [2] 赵化侨.等离子体化学及其应用,大学化学,1994,9(4):1~8
    [3] 赵化侨.等离子体化学与工艺.合肥:中国科学技术大学出版社,1993:
    [4] 盖轲,高锦章,胡中爱,等,低温等离子体在废水降解中的应用,甘肃环境研究与监测,15(1)2002:64~65
    [5] 吴承康,第十三届国际等离子体化学会议总结.力学与实践.1997,19(6):74~76
    [6] 张仁熙,侯建.等离子体技术在环境保护中的应用(上),上海化工.2000,25(20):4~5
    [7] 侯健,潘循皙,赵太杰等,常压非平衡态等离子体降解挥发性烃类污染物.中国环境科学.1999,19(3):277~280
    [8] 于勇,李晖,张振满等.用低温等离子体技术降解三氟溴甲烷(哈隆1301).复旦学报.1997,36(1):84~90
    [9] 于勇,王淑惠,潘循等.等离子体降解哈隆类物质中的竞争反应.环境科学.2000,Vol.21,No.3:60~63
    [10] Clements J S, Sato M, Davis R H, Preliminary investigation of pre-breakdown phenomena and chemical reactions using a pulsed high voltage discharge in water [J], IEEE transactions on industry application,1987.IA-23(2):224~235
    [11] Sharma A. K, Locke B. R, et al, A preliminary study of pulsed streamer corona discharge for degradation of phenol in aqueous solution, Hazardous Waste&Hazardous Material,
    
    1993,10(2):209~219
    [12] 李胜利,李劲,脉冲放电对印染废水脱色效果的实验研究,环境科学,1996,17(1):13~16
    [13] 文岳中,姜玄珍,吴墨,高压脉冲放电降解水中苯乙酮的研究[J], 中国环境科学,1999,19(5):406~409
    [14] 文岳中,姜玄珍,刘维屏,高压脉冲放电与臭氧氧化联用降解水中对氯苯酚[J].环境科学,2002,23(2):73~76
    [15] 胡祺昊,王黎明,关志成等.脉冲电流处理印染废水的研究[J].高压电器,2001,37(6):11~13
    [16] 李劲,叶齐政,郭香会等.电流体直流放电降解水中硝基苯的研究[J].环境科学,2001,22(5):99~101
    [17] Yuezhong Wen, Xuanzhen Jiang, et al. Degradation of 4-chlorophenol by high voltage pulse corona discharges combined with ozone, Plasma Chemistry and Plasma processing, 2002, 22(1): 175~185
    [18] 陈银生,张新胜,袁渭康.高压脉冲电晕放电等离子体降解废水中苯酚[J].环境科学学报,2002,22(5):566~569
    [19] 陈银生,张新胜,袁渭康.高压脉冲电晕放电等离子体降解废水4-氯酚[J].华东理工学报,2002,28(3):232~234
    [20] 凌一鸣,无声放电等离子体及其应用,电子器件,Vol.20,No.3 Sep.1997 8~17
    [21] Eliasson, B.; Kogelschatz, U., Modeling and applications of silent discharge plasmas, IEEE Transactions on Plasma Science, 1991, 19(2): 309-323
    [22] 安得列夫著,金道森译,放电中的有机合成[M].北京,科学出版社,1959
    [23] 庞会从等,臭氧在水处理中的应用,河北科技大学学报,24(2003)2,81~85
    [24] 方兴东,关志成,王黎明,刘虹,梁曦东,高压脉冲放电在水处理中的应用及发展,高电压技术,26(2000)No.1 29~31
    [25] Masuda S, et al, A ceramic-based ozonizer using high-frequency discharge, IEEE IA, 1988, 24(2):
    [26] 张军,任云利,付保罗,臭氧发生器的研制及其在水处理中的应用条件,洛阳工学院学报,20(1999),No.2,85~87
    [27] 叶齐政,万辉,雷燕,张家聪,李劲,放电等离子体水处理技术中的若干
    
    问题,高电压技术,2003(4),32~34
    [28] 李劲,王泽文,高秋华等.放电等离子体水处理技术中的放电问题[J].高电压技术,1997,23(2):7~8
    [29] Milorad M. Kuraica, et al, Ozonized water generator based on coaxial dielectric barrier discharge in air, Vacuum 73(2004) 705~708
    [30] 印永祥,程仕清,吴广军.大气压下交流辉光放电等离子体气—液相化学反应器[J].核聚变与等离子体物理,1997,17(4):46~49
    [31] 李来胜 祝万鹏 李中和,催化臭氧化—一种有前景的水处理高级氧化技术,给水排水,27(2001),6,26~29
    [32] 刘铁民等,臭氧-活性炭在炼油厂污水深度处理及回用中的应用,辽宁城乡环境科技,23(2003)4,43~44
    [33] 江举辉,虞继舜,李武,黄琪,氧协同产生·OH的高级氧化过程研究进展及影响因素的探讨,工业安全与环保,2001年第27卷第12期,16~20
    [34] Volk C., Roche P., Joret J.-C., Paillard H., Comparison of the effect of ozone, ozone hydrogen peroxide system and catalytic ozone on the biodegradable organic matter of afulvic acid solution, Water Research, 1997,31(3):650~656
    [35] Nal Hayek, et al, Fe(Ⅲ)/Al_2O_3-catalysed ozonation of phenol and its ozonation byproducts, Environ. Technol. Letters, 1989,10:415~426
    [36] 苏建龙,黄卫东,液电脉冲等离子体处理高浓度有机废液的机理研究,环境科学动态,1997,2,13~16
    [37] 卞文娟,杨彬,雷乐成,液电等离子体处理有机废水,环境污染治理技术与设备,2003,4(5):81-84
    [38] Masayuki Sato, et al, Formation of chemical species and their effects on microorganisms using pulsed high voltage discharge in water, IEEE Transaction on Industry Applications, 1996, 32(1): 106~112
    [39] Willberg D. M., P. S. Lang, et al, Degradation of 4-chlorophenol, 3,4-dichloroaniline, and 2,4,6-trinitrotoluene in an electrohydraulic discharge reactor, Environ. Sci. Technol.,1996,30:2526~2534
    [40] Lang P S, Ching W K, Willberg D M et al. Oxidative degradation of 2,4,6-trinitrotolene by ozone in an electro-hydraulic discharge reactor [J], Environ. Sci. Technol. 1998, 32:
    
    3142~3148
    [41] David R. Grymonpre, et al,. The role of Fenton's reaction in aqueous phase pulsed streamer corona reactors, Chemical Engineering Journal, 82(2001) 189~207
    [42] David R. Grymonpre, et al, Aqueous-phase pulsed streamer corona reactor using suspended activated carbon particles for phenol oxidation: model-data comparison, Chemical Engineering science, 54(1999)3095~3105
    [43] Joshi A. A, Locke B R. Formation of hydroxyl radicals, Hydrogen, peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution, Journal of hazardous materials [J], 1995, 41:3~30
    [44] Bing Sun, Masayuki Sato, Clements JS. Optical study active species produced by a pulsed streamer corona dis-charge in water, Journal of Electrostatics[J],1997,39:189~202
    [45] Bing Sun, Sato M, Clements JS. Non-uniform pulse. discharge-induced radical production in distilled water, Journal of Electrostatics [J],1998,43:115~126
    [46] AntoTri Sugiarto et al, Advanced oxidation processes using pulsed streamer corona discharge in water, Thin Solid Films, 2002,407:174~178
    [47] M.A. Malik, et al, Synergistic effect of pulsed corona. discharges and ozonation on de-colourization of methylene blue in water, Plasma Sources Sci. Technol. 11(2002) 236-240
    [48] M.A. Malik, Synergistic effect of plasmacatalyst and ozone in a pulsed corona discharge reactor on the decomposition of organic pollutants in water, Plasma Sources Sci. Technol. 12(2002)26~32
    [49] YueZhong Wen, et al, Pulsed corona discharge induced reactions of acetophenone in water, Plasma chemistry and processing, 2001, 21(3): 345-354
    [50] Hamilton W. A., and Sale A. J. H., Effects of High Electric Fields on Microorganisms Ⅱ. Mechanism of Action of the Lethal Effect, Biochem. Biophys. Acta; 1967, 148:789-800
    [51] Mizuno A, et al, Destruction of living cells by pulsed high-voltage application. IEEE IA,1988, 24(3):
    [52] Jayaram S., Castle G. S. P., Margaritis A., Kinetics of Sterilization of Lactobacillus brevis Cells by the Application of High Voltage Pulses, Biotech. Bioeng., 1992,40:1412-1420.
    [53] A. Hickling, Electrochemical Processes in Glow Discharge at Gas-solution interface, Modern aspects in electrochemistry, Vol.6, edited by JO'M Bockris & B E Conway
    
    (Butterworks, London)(1971)p. 329
    [54] A. Hickling and J. K. Linacre. Glow-discharge electrolysis part-Ⅰ.The Anodic Formation of hydrogen peroxide in Inert Electrolytes. J. Chem. Soc. 1954:711
    [55] R. A. Davies and A. Hickling, Glow-discharge electrolysis part-Ⅱ.The Anodic Oxidation of Ferrous sulphate. J. Chem. Soc. 1952:3595
    [56] H. A. Dewhurst, J. E Flagg and E K. Watson, Oxidation of aqueous ferrous sulfate by glow discharge, Journal of the Electrochemical Society. April 1959: 366~367.
    [57] S. K. Sengupta, O.P.Singh. Contact glow discharge electrolysis: a study of its chemical yields in aqueous inert-type electrolysis. J. Electro-anal. Chem.1994, (369): 113-120.
    [58] S. K. Sengupta, R. Singh and A. K.Srivastava. A study on non-faradaic yields of anodic contact glow discharge electrolysis using cerous ion as the OH scavenger: An estimate of the primary yield of OH radicals. Indian Journal of Chemistry.1998.37A.: 558~560.
    [59] S.K.Sengupta, R.. Singh and A. K. Srivastava. A study on the origin of nonfaradaic behavior of anodic contact glow discharge electrolysis—The relationship between power dissipated in glow discharges and non-faradaic yields. J. Electrochimical Soc.1998, (145):2209~2213.
    [60] S. K. Sengupta, et al, contact glow discharge electrolysis: a study on its origin in the light of the theory of hydrodynamic instabilities in local solvent vaporization by Joule heating during, electrolysis, J. Electroanal. Chem. 1997, (427): 23~27
    [61] M. Tezuka, anodic Hydrogen Evolution in Contact Glow-Discharge Electrolysis of Sulfuric Acid Solution, DENKI KAGAKU 电气化学工业物理化学, 1993, 61(7):794-795.
    [62] K. Harada, T. Iwasaki. Syntheses.of. amino acids from aliphatic acid by glow discharge electrolysis Nature,1974, (250): 426
    [63] K. Harada, S. Suzuki. The new synthesis of uracil ans 1,3-dimethyuracil, Nature.1977,(266): 275
    [64] K. Harada, et al, Reductive fixation of molecular Nitrogen by glow discharge against water, J. CHEM. SOC., CHEM. COMUN. 1986 1384~1385
    [65] S. A. Campbell, V. J. Cunnane and D. J. Schiffrin, Cathodic contact glow discharges in reduced pressure, J. Electroanal. Chem., 1992(325): 257~268
    
    
    [66] S. K. Sengupta. Chemical Effects of Cathodic Glow Electrolysis in Electrolytes containing Oxidative Substrates: Cathodic Oxidation of Iodide to Iodine. Indian J. Chem. 1986, (A25): 261
    [67] M. Tezuka, M. Iwasaki, Oxidative Degradation of Phenols by Contact Glow Discharge Electrolysis. 电气化学工业物理化学, 1997, 65(12):1057~1060
    [68] M.Tezuka, M.Iwasaki. Plasma induced degradation of chlorophenols in an aqueous solution, Thin solid films, 1998, (316): 123~127
    [69] M.Tezuka, M.Iwasaki, Liquid-phase reactions induced by gaseous plasma. Decomposition of benzoic acids in aqueous solution, Plasma & Ions.1999, (1): 23~26
    [70] M.Tezuka, M.Iwasaki. Plasma induced degradation of aniline in an aqueous solution. Thin solid films, 2001, (386):204~207
    [71] J. Gao, Z.HU, X. Wang et al, Oxidative degradation of acridine induced by Plasma with contact glow discharge electrolysis, Thin Solid Films, 2001, 390:154~158
    [72] J. Gao, Z. HU, X, Wang .et al. Degradation of α-Naphthol by Plasma in Aqueous Solution, Plasma Science & Technology, 2001,3(1):641~645
    [73] 陆泉芳,俞洁,刘永军等.接触辉光放电等离子体降解水体中的对氯硝基苯 西北师范大学学报,2003,39(1):49~53
    [74] J. Gao, W. YANG, Y. LIU, et al. Oxidative Degradation of ο-Chlorophenol with Contact Glow Discharges in Aqueous Solution Plasma Science &Technology. 2003,5(1): 1609~1614.
    [75] J. Gao, K. Gai, X. Wang. Plasma induced, degradation of aniline in aqueous solution, Plasma Science&technology, 2002, 4(2): 1243~1251
    [76] Kokufuta E, Shibassawi T, Nakanura I. Degradation of polyethylene glycol in a localized reaction zone during glow discharge. electrolysis. J. Chem. Soc. Chem. Cemmun.1985: 100~102
    [77] 盖轲,废水中有毒物质的等离子体降解及其中间产物的高效液相色谱分析,西北师范大学[硕士论文],2003
    [78] Jinzhang Gao, Yongjun Liu, Wu Yang, et al Oxidative degradation of phenol in aqueous electrolyte induced by plasma from a direct glow discharge, Plasma Sources Sci. Technol. 12(2003) 533~538

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700