用户名: 密码: 验证码:
猪场废水IC厌氧—三沟式氧化沟工艺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着集约化、机械化养猪业的发展,养猪场所带来的环境污染已日趋严重。目前规模化猪场废水大多数仅仅采用传统厌氧工艺,无法满足越来越严格的废水排放要求。针对猪场废水有机污染物浓度高、难处理的现状,本论文采用IC厌氧-三沟式氧化沟的组合工艺路线进行研究,重点考察了三沟式氧化沟处理猪场废水厌氧消化液的工艺性能和处理效果,主要结论如下:
     猪场废水先进入IC厌氧反应器进行消化处理,考察了IC反应器启动过程和IC厌氧运行效果,实验表明,IC反应器启动初期容积负荷较低,HRT过长不利于COD去除率的上升;IC反应器对不同浓度猪场废水在水力停留时间较短(HRT=5.4h、7.6h、9.4h)的情况下都有很好的去除效果,COD去除率稳定在80.85%~90.2%;温度在16℃以上IC反应器运行良好,COD去除率达80%以上。
     猪场废水IC厌氧消化液再进入三沟式氧化沟进行好氧处理。对三沟式氧化沟在两种模式下(硝化模式和硝化-反硝化模式)进行比较,结果表明,从出水的有机物、悬浮物的去除效果来看,两种模式相差不大,而硝化-反硝化模式在脱氮、除磷和动力消耗方面明显优于硝化模式。考察了温度、水力停留时间(有机负荷)、碳氮比等对硝化-反硝化模式的运行效果的影响,结果表明,COD和TN的去除率均受温度的影响,尤以TN的去除率受影响更大;三沟式氧化沟处理IC厌氧消化液的最佳HRT为18h;碳源的数量以及碳源质量的高低是决定反硝化效果的重要因素。运行周期中反硝化运行和硝化运行的时间比t_(DN)/t_N是平衡处理系统反硝化、硝化能力的重要参数,分别比较了t_(DN)/t_N为0.17、0.27、0.40、0.56四种不同组合的运行效果(运行周期均为8h),结果表明,当硝化能力与反硝化潜能最接近时,即t_(DN)/t_N为0.4时,脱氮效果最好。总结了三沟式氧化沟中累积出现的微生物种类,统计了日常出现的优势种群以及微生物在不同条件改变的特点。从提高脱氮效果、提高除磷效果、控制污泥膨胀等方面提出了便于操作的措施和建议。采用ASM1来表达水质变量的物料平衡方程,建立了动态的三沟式氧化沟水质模型,模拟结果显示,各水质变量的变化都表现出不同程度的周期性,特别突出的峰值出现的原因主要是受边界条件突然变化的影响,通过模拟结果和实测结果比较,模型具有较好的预测性。
     论文最后探讨了IC厌氧-三沟式氧化沟组合工艺处理猪场废水的特点,COD总去除率高达97%,NH_3-N去除率达到78.6%,处理出水除TP外都能达到《畜禽养殖业污染物排放标准》。同时结合实际工程实例,分析比较猪场废水达标治理运行费用,得出本组合工艺具有处理效果好、流程简单、构筑物少、运行管理费用低等特点,最后提出一套猪场废水达标治理工艺——IC厌氧-三沟式氧化沟组合工艺。
With the development of mechanized piggeries, environmental pollution that it brought about has become more and more serious. Conventional anaerobic processes are merely adopted by the piggeries now, so it can not meet the discharge standard of pollutants. It is difficult to treat piggery wastewater due to higher organic waste contained in it. In this paper IC anaerobic-triple oxidation ditch was adopted and process performance and treatment efficiency of triple oxidation ditch(T-ditch) treating piggery wastewater were emphasized. The main conclusions are as fellows:
    Firstly, piggery wastewater is treated with IC anaerobic reactor. Then the start-up of the reactor and operation efficiency are studied. It is discovered that cubage load is lower in the forepart of the start-up and overlong HRT is against the treatment efficiency of COD removal. The treatment efficiency of the different concentration in piggery wastewater is good under short HRT (HRT=5.4h, 7.6h, 9.4h) with IC anaerobic reactor, and removal rate of the COD reaches 80.85%~90.2%. The operation of IC reactor is in a good condition under 16癈, which reaches 80%.
    Afterward, IC anaerobically digested effluent of piggery wastewater is treated with T-ditch. T-ditch process with nitrification and denitrification can achieve a better performance in removal of COD and SS, and is reliable in operation. The removal efficiency of TN TP in the process are better than that of only combined with nitrification. The influence of the temperature, HRT and C/N to the efficiency of the denitrification operation is studied. The removal rate of COD and TN is influenced by the temperature; especially the influence of the removal rate of TN is bigger. The best HRT is 18h when IC anaerobically digested effluent is treated with T-ditch. The amount and quality of carbon source are the important factors to the denitrification.
    It was found that the ratio of the duration for denitrification phase and that for nitrification, tDN/t, is an important parameter to balance denitrification potential and nitrification capability. By comparing four different tDN/tN:0.17, 0.27, 0.40, 0.56, the best nitrogen removal efficiency can be achieved while tDN/tN is 0.40. The microzoon species appearing in T-ditch operation were summarized in this paper, and some characteristics of biofacies in different conditions were discussed. Some detailed suggestions for improving TN, TP removal, controlling sludge bulking, et al in operation T-ditch are provided. The mass balance equations using ASM1 and the water quality model of T-ditch are established. The simulation result shows that the variety of different water quality represents the periodicity of various degrees and the reason of the appearance of especial peak value is mainly of boundary condition. By comparing the simulation and practice result, the water quality model of T-ditch is good for prediction. .
    Last, the characters of IC Anaerobic-Triple Oxidation Ditch for Piggery Wastewater
    
    
    
    are discussed. The total removal rate of the COD is 97% and the removal rate of the NH3-N is 97%. Therefore, the treated wastewater could meet the discharge standard of pollutants. By comparing the operative expense between this process and practical terms, the former have the good efficiency of treatment for simple flow, few building, low expense of operative and management et al. Finally, IC anaerobic-triple oxidation ditch is concluded.
引文
[1]王俊勋.中国养猪业发展概况及发展思路探讨[J].中国畜牧,1999,3:28-31
    [2]李庆康,吴雷等.我国集约化畜禽养殖场粪便处理利用现状及展望[J].农业环境保护,2000,19(4):251-254
    [3]李长生,路旭,吴冰.规模化猪场粪污处理工艺的研究[J].农业工程学报,1997,13(增刊):58-60
    [4]上海市环保局.环境保护法规大全《上海市大中型畜禽场粪水排放暂行规定》.上海上海科学文献出版社,494
    [5]国家环保总局.环境保护法规大全《畜禽养殖业污染物排放标准》.
    [6]金凌奇.集约化畜牧生产对环境的污染与防治对策[J].农业工程学报,2000,16(4):88-94
    [7]L. H. A. Habete etc. Anaerobic treatment of inuline effluent in and internal circulation reactor[J]. Wat. Sci. Tech., 1997,35(10):189-197
    [8]邵希豪,喻俊,范国东等.内循环厌氧反应器(IC)探讨[J].中国沼气,200119(1):27-29
    [9]Souza M E, Criteria for the utilization design and operation of UASB reactor[J]. Wat.Sci. Tech., 1986,18(12):55
    [10]Fang H H P, Lau L Wc. Start-up of thermophilic UASB reactors using different mesophilic seed sludyes[J], Wat.Sci.Tech,1996,34(5-6):445
    [11]胡纪萃.试论内循环厌氧反应器[J].中国沼气,1996,17(2):3-6
    [12]Petersen,G. Second Generation Oxidation Ditch:Advanced Technology in Simple Design[J]. Wat.Sci.Tech., 1993,27(9):105-120
    [13]Mandt, M.G.,Bell,B.A. Oxidation Ditches in Wastewater Treatment[J]. New York:Aun Arbor Science Publishers, 1982 ..
    [14]王诚信.交替独立运行式氧化沟脱氮磷技术[J].中国给水排水,1990,6(6):56-58
    [15]周律,钱易,杨肇健等.三沟式氧化沟处理城市污水的效应[J].中国给水排水,1997,13(5):4-7
    [16]徐应明.畜禽养殖行业废水排放标准的研究[J].上海环境科学,1995,14(2):27
    [17]王宝艾等.关于猪场粪尿处理系统的现状[J].家禽生态,1993,14(4):34-39
    [18]Chongrak Polprasert,P.Y.Yang et al. Productive Utilization of Farm Wasters:a Case Study for Developing Countries[J]. Resouces,Conservation and Recycling, 1994(11):245-295
    [19]Mass,D.I et al. Effect of Antibiotics on Psychrophilic Anaerobic digestion of Swine Manure Slurry in Sequencing Batch Reactors[J]. Bioresources Technology,2000,75(12):205-211
    [20]郑武,谢晓丽,陈仁中等.广州市畜牧业废水排放与治理现状分析[J].农业环境与发展,1998,15(2):17-20
    [21]邓良伟,陈铬铭.IC工艺处理猪场废水实验研究[J].中国沼气,200119(20):12-15
    [22]寥新娣等.规模化猪场用水与废水处理技术[M].北京冲国农业出版社,1998:107-110
    [23]朱锦福.集约化蛋鸡场鸡粪混合液资源化无害化处理.城市环境与城市生态,1992,5(1):1-6
    [24]王云飞等.分段压氧-A/O系统处理高浓度禽粪水.上海环境科学,1992,11(7):33
    [25]彭武厚.厌氧消化法处理畜禽粪的研究[J].工业微生物,1997,(4):1-4
    [26]程文霞等.猪场废水处理中养分含量与能源流通变化规律研究[J].四川环境,1992,(2):5-10
    [27]Vallee P et al. Waste management system for a 2400-head swine operation:pilot scale study[J]. Paper Am Soc Agric Eng,1989,89-93
    [28]Montuelle B et al. Piggery and cheese-dairy waste water treatment:an anaerobic/aerobic process[M]. Storing,handing and springing of manure and municipal waste.1988
    [29]Arora,M.L.,Barth,E.F & Umphres,M.B. Technology evaluation of sequencing batch reactors[J].
    
    Joural WPCF, 1985,57(8):867-875
    [30]Hannsen et al. Improving Thermophilic Anaerobic Digestion of Swine Manure[J]. 1992,26(5-6):977-985
    [31]Zeeman,G. Methane Production/Emission in Storages for Animal Manure[J]. Fertilizer Research 1994,37(3):207-211
    [32]张彩英.日本畜产环境污染的现状及其对策[J].国外农业环境保护,1992(2):26-28
    [33]邓学法邓.畜禽养殖生产中环境污染问题及治理措施[J].河南畜牧兽医,1999,20(9):4-7
    [34]刘荣章,王子齐.台湾养猪业污染防治措施[J].台湾农业情况,1991(2):11-13
    [35]钱易,米祥友.现代废水处理新技术[M].北京:中国科学技术出版社,1993
    [36]汪敏等.五里塘生态农场有机废弃物的资源化生态工艺[J].城市环境与城市生态,1993,6(3):21-24
    [37]Kameoka T et al. Methane fermentation system for swine wastewater treatment[J]. Japanese Journal of Zoo Technical Science,1988,6(12):38-41
    [38]王树功.藻类污染生态学研究进展[J].环境科学进展,1984,16(8):1-6
    [39]王建龙,施汉昌.复合生物反应器处理废水的研究及进展[J].工业水处理,1997,17(2):8-12
    [40]魏宏斌,徐迪民等.水中有机物污染物物理化学处理技术的现状和发展趋势[J].上海环境科学,1997,16(4):16
    [41]关绍宁,陈登甲.万头猪场粪尿污水处理模式初探[J].农业机械化论坛,1996,(4):21-23
    [42]杨平,方治华.厌氧流化床废水处理技术研究及应用进展[J].环境科学进展,1994,2(5):35-42
    [43]Schellinkhout,A.,and Collazos C,J. Full Scale Application of the UASB Yechnology for Sewage Treatment, IN:Proc.Cong[M]. IAWPRC Anaerobic Digestion,Brazil. 145-152
    [44]任南琪.水污染控制物生物学[M].哈尔滨:黑龙江科技大学出版社,1993
    [45]伦世仪,陈坚等.ABR-UASB工艺处理酒精废水的研究[J].中国沼气,1989,7(2):8-13
    [46]顾夏生.水处理工程[M].北京:清华大学出版社,1985
    [47]Wong SH et al. Pilot scale aerobic sequencing batch reactor for pig waste treatment[J]. Journal of the Institution of Water and Environmental Management, 1989,3 (1):75-81
    [48]崔理华等.国内外规模化猪场废水处理组合工艺研究[J].农业环境保护,2000,19(3):188-191
    [49]Kee K C et al. A wastewater treatment system for an industrialiaed pig farm[J]. Wat.Sci. Tech.,1993.28(7):217-222
    [50]赵恒斗.规模化养猪的污水生产、治理与综合利用[J].中国沼气,1996,14(3)24-26
    [51]Kameoka T et al. Methane fermentation system for swine wastewater treatment[J]. Japanese Journal of Zoo technical Science,1988;59(8):675-681
    [52]Montuelle B et al. Piggery and cheese-dairy waste water treatment:an anaerobic/aerobic process[J]. Storing,handing and springing of manure and municipal waste, 1988,12,9-15
    [53]Yang P Y et al. A land limited and enery saving treatment system for dilute swine wastewater[J]. Paper-Am soc Agric Eng, 1993,9(4):17-24
    [54]吴静,陆正禹,胡纪萃等.新型高效内循环(IC)厌氧反应器[J].中国给水排水,200117(1):26-29
    [55]王凯军.厌氧内循环(IC)反应器的应用[J].给水排水,1996,22(11):54-56
    [56]张忠波,陈吕军,胡纪萃等.IC反应器技术的发展[J].环境污染与防治,2000,22(3):39-41
    [57]高小萍,陈吕军.厌氧反应器的发展[J].江苏环境科技,1999,12(3):32-34
    [58]Pereboom J.H.F Methanogenic Granule development in full scale internal circulation rectors[J]. Wat.Sci. Tech., 1994,30(8):9-21
    [59]Barnes,D.,Forster, C.F.,Johnstone,D.W.M. Oxidation Ditches in Wastewater Treatment[M]. London: Pitman Books Limited, 1983
    
    
    [60]沈永明.奥贝尔(Orbal)多槽式氧化沟[J].中国给水排水,1987,3(6):35-38
    [61]杨宝林.一种经济、高效的污水处理构筑物-氧化沟渠[J].中国给水排水,1988,4(1)45-48
    [62]潘成功.氧化沟系统在丹麦的发展和应用[J].给水排水,1992,8(6):18-21
    [63]任周鸣.三槽式氧化沟的特点和工艺控制[J].环境污染与防治,1999,21(2):25-27
    [64]汪大翬,雷乐成.水处理新技术及工程设计[M].北京:化学工业出版社,2001
    [65]沈耀良,王宝贞.废水生物处理新技术——理论与应用[M].北京:中国环境科学出版社,2000
    [66]庞真勇.氧化沟污水处理技术展望[J].环境科学与技术,1999,4:40-41
    [67]Tetreault,M.J.,Rusten,B.,Benediet,A.H.et al,. Assessment of Phased Isolation Ditch Technologies[J]. JWPCF,1987,59(9):833-841
    [68]陈吕军.生物膜氧化沟污水处理工艺和系列转刷的开发研究[清华大学博士论文].北京:清华大学环境工程系,1995.1
    [69]上海石油化工总厂水质净化厂.上海石化总厂水质净化厂三期改造扩建总体联动试车方案.199111
    [70]郭健.交替工作式氧化沟技术[J].污染防治技术,1996,9(1):49-52
    [71]贺廷龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998,9-13
    [72]Takashi Osada,Kiyyonri Haga,Yasuo Harada. Ramoval of nitrogen and phophorus from swine wastewater by the activated sludge units with intermittent aeration process. Wat Res,1991,25(11):1377-1388
    [73]Randall,C.W.,Bandall,J.L.,Stensel,H.D. Design and Retrofit of Wastewater Treatment .Plants for Biological Nutrient Removal[M]. U.S.A:Techomic Publishing Co.,Inc., 1992
    [74]王凯军.活性污泥膨胀机理与控制[M].北京.中国环境科学出版社,1992
    [75]Chudoba, J. Control of Activated S(?)dge Filamentous Bulking:Experimental Verificat on of A Kinetic Selection Theory[J]. Wat.Res.,1985,19(2):420-432
    [76]Sezgin,M. AUnified Theory of Filamentous Activated Sludge Bulking[J]. JMPCF,1978.50(9):361-373
    [77]章非娟.生物脱氮技术[M].北京:中国环境科学出版社,1992
    [78]Sedlak,R. Phosphorus and Nitrogen Removal from Municipal Wastewater:Principles and Practice[M]. U.S.A:Lewis publishers, 1991
    [79]Henze,M.C. A General Model for Single Sludge Wastewater Systems[J]. Wat.Res., 1987,21 (3):505-515
    [80]Ekama G A, Siebrita I P, Marais G V R. Considerations in the process design of nutrient removal activated sludge processes[J]. Wat Sci,1983,15:283-318
    [81]Henze M, Grady W, MaraisG v R et al. Activated Sludge Modle No.1. IAWPRC Scientific and Technical Report No. 1 [M]. London,England:IAWPRC, 1987
    [82]A.Stamou and A.Kastiri. Modeling of alternating oxidation ditch system[J]. Wat.Sci. Tech., 1999,39(4):169-176
    [83]Jack Makinia and Scott A.wells. Ageneral model of the activated sludge reactor with dispersive flow-I.Model development and parameter estimation[J]. Wat.Sci.,2000,34(16):3987-3996
    [84]M.Henze,Jr C.P.Leslie Grady, G.V.R.Mara et al. Ageneral model for single-sludge wastewater treatment system[J], Wat.Sci., 1987,21(5):405-515
    [85]J.Huang and J.Hao. Alternating aerobic-anoxic process for nitrogen removal[J]. Wat.Env. Res., 1996,68(1):83-93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700