用户名: 密码: 验证码:
统一潮流控制器(UPFC)的控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灵活交流输电系统(FACTS)是电力电子技术在电力交流输电系统中应用的一个重要方面,而统一潮流控制器(UPFC)能分别或同时调节输电线路的电压、阻抗和相角对线路的有功和无功潮流进行快速、有效地控制,是一种最灵活的FACTS控制器。论文介绍了UPFC的结构、工作原理和应用研究进展。
     论文对UPFC的主要构成器件PWM变换器进行了研究,在PWM整流电路的直接电流控制方法中,采用了单神经元PID控制算法,与传统的PI控制方案仿真比较表明,该算法明显减少了直流电容电压在负载扰动时恢复到设定值的响应时间。对于电流滞环控制器,论文推导了其开关频率的计算公式,并依据制约开关频率的因素,提出了一种变环宽的滞环控制策略,比较固定环宽的控制方法,既相对稳定了开关频率,又提高了电流跟踪控制性能。
     对于UPFC的模型及控制方法研究,论文运用矢量分析的方法,基于dqo同步旋转坐标系建立了UPFC串联侧的数学模型,对该模型采用了状态反馈解耦的方法,使有功和无功实现完全解耦,达到了理想的单独控制。为了满足工程上广泛应用的PI控制器的性能要求,又能克服一般PI控制器参数整定和调整困难的不足,论文提出了采用BP神经网络PI控制器分别对有功和无功进行控制的方案,使PI控制器的参数可以在线自动整定和调节,既提高了控制性能,又不必采用解耦环节而达到了减小有功和无功相互影响的效果。
As the most flexible controller of the Flexible AC Transmission System (FACTS), a Unified Power Flow Controller(UPFC) can control transmission line impedance, voltage magnitude and phase angle either selectively or simultaneously in appropriate combinations and can also control independently the real and reactive power flow in a transmission circuit. This paper introduces the principle, performance and basic operating modes of the UPFC.
    The PWM inverter, one of the devices of the UPFC, is studied and the direct current control scheme of the PWM rectifier is discussed in this paper .A single neuron self-adaptive PID controller is designed in the scheme, which decreases the response time of DC voltage sharply when the load is changed. A hysteresis band current controller is analyzed and the calculating formulas about its switching frequency are deduced in the paper. According to the determinative factors of switching frequency, this paper presents a current control scheme with alterable hysteresis band, which reduces the range of switching frequency and improves the performance of the controlled current.
    By means of vector analysis, a mathematics model of the series part of the UPFC is deduced in dqo orthogonal co-ordinate within synchronously rotating reference frame. A state feedback decoupling method is applied in the model. Consequently, the real and reactive power can be controlled independently. Finally, a BP neuron network PI control scheme is presented for the mathematics model, and the parameter of the PI controller can be found automatically and adjusted online. Simulation results prove that the scheme improves the self-adaptive capability of PI controller, and lowers interaction of the real and reactive power.
引文
[1] 赵贺.电力电子学在电力系统中的应用—灵活交流输电系统.北京:中国电力出版社,2001
    [2] 何大愚.柔性交流输电技术及其控制器研制的新发展—TCPST,IPC(TCIPC)和SSSC.电力系统自动化,1997,21(6):1~6
    [3] 韩英铎,王仲鸿,林孔兴等.电力系统中的三项前沿课题—柔性交流输电技术、智能控制、基于GPS的动态安全分析与监测系统.清华大学学报,1997,37(7):1~6
    [4] 中国电工技术学会.电工高新技术丛书(第5分册).北京:机械工业出版社,2000
    [5] 孙元章,刘前进.FACTS控制技术综述—模型、目标与策略.电力系统自动化,1999,23(6):1~7
    [6] 何大愚.柔性交流输电系统和用户电力技术的新进展.电力系统自动化,1999,23(6):8~13
    [7] 何大愚.柔性交流输电控制器及对我国开发应用的建议.电网技术,1996,20(7):1~8
    [8] 何大愚.电力电子技术的进步与柔性交流输电技术的换代发展.电网技术,1999,23(10):1~4
    [9] 王仲鸿,沈斐,吴铁铮.FACTS技术研究现状及其在中国的应用与发展.电力系统自动化,2000,24(23):1~5
    [10] 李岩松,郭家骥,刘君.UPFC暂态数学模型及其应用.电力系统自动化,2000,24(21):31~34
    [11] A Nabavi Niaki, M R Iravani. Steady-state and dynamic models of unified power flow controller(UPFC) for power system studies. IEEE Transaction on Power Systems, 1996,11(4): 1937~1943
    [12] 刘前进,孙元章,黎雄等.UPFC潮流控制与优化的研究.电力系统自动化,2000,24(18):23~26
    [13] 颜伟,朱继忠,徐国禹.UPFC线性最优控制方式的研究及其对暂态稳定型的改善.中国电机工程学报,2000,20(1):45~49
    
    
    [14] Predrag C Stefanov, Aleksandar M Stankovic. Modeling of UPFC operation under unbalanced conditions with dynamic phasors. IEEE Transaction on Power Systems, 2002,17(2):395~403
    [15] 李海峰,李乃湖.FACTS装置用于电力系统稳定控制的综述.电力系统自动化,1998,22(9):31~37
    [16] 王海风,李敏,陈珩.统一潮流控制器的多变量控制设计.中国电机工程学报,2000,20(8):51~55
    [17] Hideaki Fujita, Yasuhiro Watanabe, Hirofumi Akagi. Transient analysis of a unified power flow controller and its application to design of the DC-link capacitor. IEEE Transaction on Power Electronics, 2001,16(5):735~740
    [18] T Makombe, N Jenkins. Investigation of a unified power flow controller. IEE Proc-Gener Transm Distrib, 1999,146(4):400~408
    [19] P K Dash, S Mishra, G. Panda. A radial basis function neural network controller for UPFC. IEEE Transaction on Power Systems, 2000,15(4): 1293~1299
    [20] Y L Kang, G B Shrestha, T T Lie. Application of an NLPID controller on a UPFC to improve transient stability of a power system, IEE Proc-Gener Transm Distrib, 2001,148(6):523~529
    [21] S Limyingcharoen, U D Annakkage, N C Pahalawaththa. Fuzzy logic based power flow congtroller for transientstability improvement, IEE Proc-Gener Transm Distrib, 1998,145(3):225~232
    [22] S Mishra, P K Dash, G. Panda. TS-fuzzy controller for UPFC in a ultimachine power system, IEE Proc-Gener Transm Distrib, 2000,147(1): 15~22
    [23] 杨贵杰,孙力,崔乃政等.空间矢量脉宽调制方法的研究.中国电机工程学报,2001,21(5):79~83
    [24] 张兴,张崇巍.PWM可逆变流器空间电压矢量控制技术的研究.中国电机工程学报,2001,21(10):102~105
    [25] Pablo Garcfa-Gonzalez, Aurelio Garcia-Cerrada. Control system for a PWM-Based STATCOM. IEEE Transaction on Power Dlivery, 2000'15(4):1252~1257
    [26] L Xu, V G. Agelidis, E Acha. Development considerations of DSP-controlled PWM VSC-based STATCOM. IEE Proc-Electr Power Appl, 2001,148(5):449~455
    [27] B Han, S Moon, J Park, et al. Static synchronous compensator using thyristor PWM current source inverter. IEEE Transaction on Power Dlivery, 2000, 15(4):
    
    1285~1290
    [28] Daniel Nahum Zmood, Donald Grahame Holmes. Improved voltage regulation for current-source inverters. IEEE Transaction on Industry Applications, 2001, 37(4):1028~1036
    [29] Byoung Kuk Lee, Mehrdad Ehsani. A simplified functional simulation model for three-phase voltage-source inverter using switching function concept. IEEE Transaction on Industrial Electronics, 2001,48(2):309~321
    [30] Mariusz Malinowski, Marian P Kazmierkowski, Steffan Hansen, et al. Virtual-flux-based direct power control of three-phase PWM rectifiers. IEEE Transaction on Industry Applications, 2001, 37(4): 1019~1027
    [31] S C Kuo, L Wang. Analysis of voltage control for a self-excited induction genetator using a current-controlled voltage source inverter(CC-VSI), IEE Proc-Gener Transm Distrib, 2001,148(5):431~438
    [32] M Mohaddes, A M Gole, P G Mclaren. A neural network controlled optimal pulse-width modulated STATCOM. IEEE Transaction on Power Dlivery, 1999,14(2): 481~488
    [33] K We Cheng, H Y Wang, D Sutanto. Adaptive directive neural network control for three-phase AC/DC PWM converter. IEE Proc-Electr Power Appl, 2001,148(5): 425~430
    [34] J A Gow, C D Manning. Novel fast-acting predictive cerrent mode controller for power electronic converters. IEE Proc-Electr Power Appl, 2001,148(2): 133~139
    [35] 王江,王家军,王先来等.电力电子开关变换器的滑模控制.电机与控制学报,2000,4(3):188~192
    [36] 杨少勇,林集明 陈葛松.统一潮流控制器电磁暂态过程数字仿真的初步研究.电网技术,2000,21(2):20~24
    [37] 颜伟,朱继忠,孙洪波等.统一潮流控制器的控制器设计与暂态仿真研究.电网技术,1999,23(7):15~19
    [38] 郑三保,程时杰.UPFC动态特性仿真研究.电力系统自动化,2000,24(7):26~29
    [39] Diego E Soto Sanchez, Tim C Green. Voltage balance and control in a multi-level unified power flow controller. IEEE Transaction on Power Delivery, 2001,16(4): 732~738
    
    
    [40] H chen, Y Wang, R Zhou. Transient and voltage stability enhancement via coordinated excitation and UPFC control. IEE Proc-Gener Transm Distrib, 2001, 148(3): 201~206
    [41] Kalyan K Sen. SSSC-Static series compensator: theory, modeling, and applications. IEEE Transactions on Power Delivery, 1998,13(1):241~246
    [42] Kalyan K Sen, Eric J Stacey. UPFC-unified power flow controller: theory, modeling, and applications. IEEE Transaction on Power Dlivery, 1998, 13(4):1453~1460
    [43] C D Schauder, L Gyugyi, M R Lund, et al. Operation of the unified power flow controller(UPFC) under practical constraints. IEEE Transaction on Power Dlivery, 1998,13(2): 630~639
    [44] B A Renz, A Keri, A S Mehraban, et al. AEP unified power flow controller performance. IEEE Transactions on Power Delivery, 1999,14(4): 1374~1376
    [45] Sergio Bruno, Enrico De Tuglie, Massimo La Scala. Dynamic security corrective control by UPFCs. IEEE Transaction on Power Systems, 2001,16(3):490~493
    [46] 葛敏辉,石松奇,周贵兴.UPFC控制器设计原理及方案.电网技术,2000,24(6):31~33
    [47] 王兆安,杨君,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社,1998
    [48] 熊健.三相电压型高频PWM整流器研究:[博士学位论文].武汉:华中理工大学,1999
    [49] 王顺晃,舒迪前.智能控制系统及其应用.北京:机械工业出版社,1998
    [50] 陶永华,尹怡欣,葛芦生.新型PID控制及其应用.北京:机械工业出版社,1998
    [51] 陈伯时,陈敏逊.交流调速系统.北京:机械工业出版社,1998
    [52] 张加胜,郝荣泰.滞环控制变流器的开关频率研究.电工电能新技术,1998,1:54~56
    [53] 谢鸿鸣,陈光东,王离九.电压源电流型逆变器中滞环宽度的选择.电气自动化,1995,5:14~15
    [54] 卢红,梁任秋.电流跟踪型SPWM逆变器开关频率的制约因素.电力电子技术,1993,4:10~14
    
    
    [55] 马立华,陈伯时.电流滞环跟踪控制分析.电气自动化,1995,1:4~7
    [56] 张代润,刘红萍.单相有源电力滤波器的滞环控制策略分析.电机与控制学报,1998,2(3):153~157
    [57] 刘红萍,张代润.有源电力滤波器的正弦滞环控制法研究.四川联合大学学报,1999,3(4):103~159
    [58] 吴守箴,臧英杰.电气传动的脉宽调制控制技术.北京:机械工业出版社,1999
    [59] 孙树勤.无功补偿的矢量控制.北京:中国电力出版社,1998
    [60] 许维东.静止同步串联补偿装置的智能PID控制研究:[硕士学位论文].长沙:湖南大学,2001
    [61] 汪寿基,王贵得.现代控制理论及其在电力系统控制中的应用.成都:成都科技大学出版社,1990
    [62] 刘晨晖.多变量过程控制系统解耦理论.北京:水利电力出版社,1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700