用户名: 密码: 验证码:
纳米SiO_2强化絮凝处理水溶性有机污染物的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对纳米SiO_2分散液的性质及纳米SiO_2作为助凝剂去除水溶性有机物进行了研究。通过调节pH为7及超声波震荡10min后获得了一种纳米尺度的分散液。扫描电镜、透射电镜及激光粒度检测表明该溶液中有99%的SiO_2颗粒尺寸小于30nm,并且该分散液中的颗粒保持这一尺寸10小时。
     选取三种代表不同分子量大小的有机物:腐殖酸(HA)、阴离子表面活性剂(SDS)及对氯酚作为典型有机污染物进行纳米SiO_2作为助凝剂的强化絮凝实验。对腐殖酸这一大分子有机物而言,试验结果表明,用硫酸铝作絮凝剂(20mg/L)及纳米SiO_2作为助凝剂(1mg/L)可以去除高达73%的腐殖酸,相对而言,没有纳米SiO_2作助凝剂的腐殖酸去除率只有30%。同样强化絮凝条件下,对比大分子腐殖酸,小分子的有机物SDS及对氯酚的去除率要低得多(<8%),这一结果说明纳米SiO_2的强化絮凝对大分子物质更有效。
     此外,pH值、温度、硫酸铝及纳米SiO_2的投加量能影响溶解性有机物的去除,对腐殖酸有较好去除的条件为:pH=5~9,硫酸铝投加量为20~40mg/L,SiO_2投加量为1~10mg/L。
Characteristics of nano-SiO2 dispersions and application of nano-SiO2 as coagulation-aid in removal of dissolved organic pollutants were studied. A nano- SiO2 dispersion was obtained by adjusting of the dispersion to pH 7 and supersonic agitating it for 10 minutes. Results of SEM, TEM, and Laser seizer measurements indicated that there more than 99% of the SiO2 particles were less than 30 nm size. The dispersion could be stable with the particle size for 10 hours.
    Three organic compounds, humic acid(HA), anionic surfactant(SDS) and p-chlorphenol, representing different molecule size, were selected as typical organic pollutants for enhanced coagulation experiment with nano-SiO2 as the aid. For HA, a big molecule compound, results showed that it could be removed up to 73% by coagulation with Al2(SO4)3 (20mg/L) as coagulant and nano-SiO2 (Img/L) as the aid, comparing a lower removal of 30 % without the aiding of nano-SiO2 at the same conditions.
    Comparison to the big molecule compound HA, smaller molecule compounds SDS and p-chlorphenol, a much lower removal (less than 8%) was obtained under the same coagulation conditions with the aid of nano-sized SiO2 as the HA, indicating that the enhancement of nano-sized SiO2 was more effective for bigger molecule compound than the smaller ones.
    In addition, conditions such as pH volume, temperature, dosage of Al2(SO4)3 and SiO2, could also affect the removal of the dissolved organics. The suggested conditions for good removal of HA were pH 5-9, Al2(SO4)3 20mg/L, SiO2 1~10mg/L.
引文
[1] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [2] 施周,张文辉.环境纳米技术.北京:化学工业出版社,2003
    [3] 徐国财,张立德.纳米复合材料.北京:化学工业出版社,2002
    [4] 王占生,刘文君.微污染水源饮用水处理.北京:中国建筑工业出版社,1999
    [5] 邓忠良,朱云,肖锦.强化混凝用于微污染水源水处理.工业水处理,2002,22(8):4~6
    [6] 曹春秋.强化混凝法去除饮用水中有机污染物评价.给水排水,1998,24(6):65~70
    [7] Karen Ruehl. Easing the pain of meeting the D/DBP rule with enhanced coagulation. Water Engineering & Management, 1999, 46(1): 22~25
    [8] Randtke S J. Organic contaminant removal by coagulation and related process combination. J. AWWA, 1988, 80: 40~48
    [9] Edzwald J K, et al. Polymer coagulation of humic acid waters. J. Envir. Eng. Div., 1977, 103: 989~997
    [10] 施周,张彬,许光眉.纳米技术在空气及水污染控制中的应用.南华大学学报,2003,17(1):23~29
    [11] 李田,陈正夫.城市自来水光催化氧化深度净化效果.环境科学学报,1998,18(2):167~171
    [12] 魏宏斌,严煦世,徐迪民.二氧化钛膜固定相光催化法深度处理自来水.中国给水排水,1996,12(6):10~13
    [13] Li X Z, Zhang M. Decolorrization and biodegrad ability of dyeing waster water treated by TiO_2 sentized photo-oxidation process. Water Science and Technology, 1996, 34(9): 49~55
    [14] 程沧沧,肖忠海,等.不锈钢负载TiO_2薄膜光降解印染废水.环境污染与防治,2001,23(5):241~242
    [15] 姚清照,刘正宝.光电催化降解染料废水.工业水处理,1999,19(6):15~16
    [16] Chen Shifu, Cheng Xueli. Photocatalytic degradation of organolhlorine compounds using TiO_2 supported on fiberglassCloth. Journal of Environmental Science, 1998, 10(4): 433~437.
    
    
    [17] Taha M, El-Morsi, Wes R, et al. Photocatalytic degradation of 1, 10-dichlorodecane in aqueous suspensions of TiO_2: A reaction of adsorbed chlorinated alkane with surface hydroxyl radicals. Environ. Sci. Technol., 2000, 34(6): 1018~1023
    [18] 陈士夫,赵梦月,陶跃武.玻璃纤维负载TiO2光催化降解有机磷农药.环境科学,1996,17(4):33~35.
    [19] 戴遐明.半导体氧化物超细粉末对Cr(Ⅵ)的光催化还原作用研究.环境科学,1996,17(6):34~36
    [20] Fu H X, Lu G X, Li S B. Adsorption and photo-induced reduction of Cr(Ⅵ)ion in Cr(Ⅳ)-4CP(4-Chlorophenol)aqueous system in the presence of TiO_2 as photocatalyst. J. Photochem. Photobiol, A: Chem., 1998, 114(1): 81~90
    [21] Serpone N, Ah-You Y K, Tran T P. AMI simulated sunlight photoreduction and elimination of Hg(Ⅱ) and CH_3Hg(Ⅱ) chloride salts from aqueous suspensions of titanium dioxide. Solar Energy, 1987, 39(5): 491~499
    [22] 刘转年,金奇挺,周安宁.纳米技术处理废水.环境污染治理技术与设备,2002,3(10):75~78
    [23] Pal O R, Vanjara A K. Removal of malathion and butachlor from aqueous Solution by clays and organoclays. Separation and Purification Technology, 2001, 24(2): 167~172
    [24] 钱易,汤鸿宵,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理.北京:中国环境科学出版社,2000
    [25] 刘勇建,侯小平,牟世芬.饮用水消毒副产物研究状况.环境污染治理技术与设备,2001,2(2):31~40
    [26] Bellar T. A., Lichtenberg J.J., Kroner R. C. Determining volatile organics at microgram-per-litre levels by gas chromatography. J. Am. Water Works Assoc., 1974, 66(7): 730~706
    [27] Rook J.J. Formation of haloforms during chlorination of natural waters. J. Water Treat. Exam., 1974, 23(2): 234~243
    [28] Koivusalo M., Pukkala E., Vartiainen T. et al. Drinking water chlorination and cancer-a historical cohort study in finland. Cancer Cause Control, 1997, 8(2): 192~200
    [29] Ballmaier D., Epe B. Oxidative DNA damage induced by potassium bromate under cell-free conditions and in mammalian cells. Carcinogenisis, 1995,
    
    16(4):335~342
    [30] 曹春秋.强化混凝法去除饮用水中天然有机物质评价.给水排水,1998,24(6):65~70
    [31] Bruchet A. T., et al. Effect of humic substances on the treatment of drinking water. Adv. In Chemiker, 1989, 219(1): 93~101
    [32] Aiken R. G., et al. Humid substances in soil, sediment and water. In: Wiler-Interscience. New York, 1985
    [33] 周明浩,罗启芳,王家玲.饮用水致突变前体物水生腐殖酸研究进展.重庆环境科学,1996,18(3):49~52
    [34] 李芙蓉.天然饮用水源中腐殖质的去除.工业安全与环保,2002,28(7):8~10
    [35] Egil T. Gjessing. The role of humic substances in the acidification response of soil and water results of the humic lake acidification experiment(humex). Environment International, 1994, 120(3): 363~368
    [36] Jacangelo J. G, et al. Selected processes for removal NOM: an overview. Jour. AWWA, 1995, 85(1): 64~77
    [37] 林齐平.含酚废水治理技术进展.水处理技术,1993,9(3):174~180
    [38] 刘振宇,王栋,闵志军,等.微电解法处理阴离子表面活性剂废水的研究.环境工程,1998,16(3):24~27
    [39] 刘怡,熊亚,朱锡海.废水中阴离子表面活性剂的最优化处理工艺.城市环境与生态,2001,14(1):56~58
    [40] 龚云峰,吴春华,丁桓如.强化混凝在给水处理工程中的应用.中国给水排水,2000,16(12):29~31
    [41] Stuart W Krasner. Jar-test evaluation of enhanced coagulation. Jour. AWWA, 1995(10): 93~107
    [42] 张绍园,姜兆春,王菊思.饮用水消毒副产物控制技术研究现状与发展.水处理技术,1998,24(1):7~13
    [43] Gll Grozes, Patrick White, Matthew Marshall. Enhanced coagulation: its effect on NOM removal and chemical costs. Jour. AWWA, 1995, 85(1): 78~89
    [44] Kavanaugh M. C. Modified coaculation for improved removal of trihalothane precursor. Jour. AWWA, 1978, 70(11): 163~172
    [45] Babcock D. B., Singer P. C. Chlorination and coagulation of humic and fulvic acids. Jour. AWWA, 1979, 71(3): 149~160
    
    
    [46] Julien F., et al. Comparion of organic compounds removal by coagulation flocculation and by adsorption onto preformed hydroxide flocs. Wat Res, 1994, 28(12): 2547~2555
    [47] Eric M. V., et al. Removing particles and THM precursors by enhanced coagulation. Jour. AWWA, 1998, 88(4): 139~150
    [48] 肖锦,周勤,孙伟,等.微污染原水强化混凝净化研究.给水排水,1999,25(12):14~17
    [49] 董秉直,曹达文,范瑾初.最佳混凝投加量和pH去除水中有机物的研究.工业水处理,2002,22(6):29~31
    [50] 金鹏康,王晓昌.天然有机物的混凝特性研究.西安建筑科技大学学报,2000,32(2):155~159
    [51] 丁桓如,等.控制pH混凝技术.电力设计水处理技术,1994,19(2):1~7
    [52] 黄廷林.强化絮凝法去除水中DBP先质研究.环境科学学报,1999,19(4):399~404
    [53] 左藤T,鲁赫R T.聚合物吸附对胶态分散体稳定的影响.北京:科学出版社,1988
    [54] 张清岑,黄苏萍.水性分散体系分散剂应用新进展.中国粉体技术,2000,6(4):32~35
    [55] 吴昱,王利军.水性涂料/油墨用聚合物型分散剂.涂料工业,1999,25(1):31~34
    [56] 李田,陈正夫.城市自来水光催化氧化深度净化效果.环境科学学报,1998,18(2):167~171.
    [57] 谭欣,何振雄,霍爱群.非整比纳米TiO2-x膜光催化降解水中微量卤代烃.天津大学学报,2000,33(3):360~362
    [58] Li X Z, Zhang M. Decolorrization and biodegrad ability of dyeing waster water treated by TiO_2 sentized photo-oxidation process. Water Science and Technology, 1996, 34(9): 49~55
    [59] 曹耀华,杨绍文等.二氧化钛降解有机污染物的试验研究.矿产保护与利用,2002,35(3):37~40
    [60] 程沧沧,肖忠海,等.不锈钢负载TiO_2薄膜光降解印染废水.环境污染与防治,2001,23(5):241~242
    [61] 王怡中,符雁,汤鸿霄.二氧化钛悬浆体系太阳光催化降解甲基橙研究.
    
    环境科学学报,1999,19(1):1~6
    [62] 姚清照,刘正宝.光电催化降解染料废水.工业水处理,1999,19(6):15~16
    [63] 俞三传,张建飞.复合纳滤膜及其应用.水处理技术,1997,23(3):139~144
    [64] 宋玉军,刘福安,田东敏.纳滤膜在工业上的应用.化工新型材料,1999,27(5):6~9
    [65] [苏]巴宾科夫.论水的混凝.北京:中国建筑工业出版社,1982
    [66] Shi Z. Surfactant-enhanced Dissolution and Photolysis of Chlorinated Aromatic Compounds(CASs): [dissertation]. Tennessee: University of Tennessee, 1998
    [67] 黄君礼,寇广中,杨滨生.水中腐殖酸等前驱物对卤仿形成的影响.环境化学,1987,6(5):14~21
    [68] American Public Health Association. Standard Methods for the Examination of Water and Wastewater (19th ed.). Washington D C: American Public Health Association, 1995
    [69] 许保玖.给水处理理论.北京:中国建筑工业出版社,2000
    [70] James K Edzwald, et al. Enhanced coagulation: us requirements and a broader view. Wat. Sci. Tech., 1999, 40(9): 63~70
    [71] 龚云蜂,吴春华,丁桓如.强化混凝在给水处理工程中的应用.中国给水排水,2000,16(12):29~31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700