用户名: 密码: 验证码:
我国干旱荒漠植被区土壤生态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西部大开发倡导生态先行,为探讨我国干旱区土壤的生态特性,为土壤开发利用提供基础资料,本课题选择宁夏沙湖典型区域作为试验点,对土壤生态特性的各项指标进行了调查分析,其主要结果如下:
     (1)该地区土壤物理性质存在较大差异。土壤机械组成表现为粉粒含量最高,平均为45.03%;粘粒含量最低,平均为24.69%。砂粒含量居中,并且在各样地和各层间差异都很显著,可作为区别该地区土壤质地的主要因素。土壤含水量较低,最小的含水量不到1%,土壤含水量从表层至深层逐渐增加,且各层间差异显著。土壤容重在剖面中从上至下逐渐增大,相应的土壤孔隙度从上至下逐渐减小,它们在各样地间差异不显著,但在各层间差异达极显著水平。土壤抗蚀性随土层加深有增大的趋势。
     (2)土壤化学性质也因不同土壤类型有一定的异质性。该地区土壤碱性较强,pH值均大于8。表土层pH值相对较低,植物根系含量丰富,枯枝落叶层较厚,改善了土壤酸碱性。该地区土壤有机质含量均很低,平均还不到1%。表土层有机质含量最高,且随着土层深度增加,有机质含量逐渐降低。土壤有效磷含量比较稳定,而速效钾各样地间具有显著差异,但土壤剖面各层间无显著差异。土壤含盐量较高,平均达到1110.34mS/cm,表土层最高,下层较低。
     (3)土壤理化性质间关系错综复杂,各因素间均具有一定的相关性。pH值、有机质、粘粒含量均对土壤中速效钾含量产生极大的影响。总孔隙度与容重均与有效磷含量重有很大的相关性。含水量与容重、总孔隙度、粘粒含量、砂粒含量之间也具有密切的相关性。另外粉粒含量、砂粒含量、pH值均与抗蚀性关系密切。
     (4)土壤微生物量及酶活性也存在一定的特点。土壤微生物量在各样地间具有显著差异,同时各样地随土层深度增加,微生物量总体呈减少趋势。土壤微生物量与土壤容重,总孔隙度和有机质含量有着非常密切的关系,与速效钾含量也有一定的关系,而含水量也在很大程度上影响到微生物的数量。该地区不同的土壤酶活性差异很显著,蔗糖酶活性较大,三种磷酸酶活性均较小。各种土壤酶活性在各样地的各层中变化趋势非常一致,随着土层深度增加而减少。制约各种酶活性的理化性质并不相同,其中,有机质含量与酶活性的正相关关系最密切。土壤微生物含量与各种酶活性之间均有密切的关系,可依据土壤微生物量与酶活性将该地区土壤分为两类进行考虑。
As we know, ecology problem must be placed at the first in the west development. The experimental plots were located in Shahu of Ningxia autonomous region in order to investigate and analysis this area' soil physical and chemical properties, biological activity and so on. This will be benefit the soil exploitation and utilization of these kinds of regions in the future through providing some basic data and materials. The main results obtained are as follows:
    1. The soil physical and chemical properties are very different in this region's different plots. As far as soil texture is concerned, the content of silt particles is highest with the average of 45.03% and the content of clay particles is lowest with the average of 24.69% in every soil separates. The content of sandy particles is in middle and it was variation in all different plots and soil layers, so we can mainly dependent in the content of sandy particles to distinguish different soil texture in this region. The soil water content is very low, and the lowest value is less than 1%. The soil water increased from the top layer to the bottom layer with the great variances in different layers. The bulk density is increased from top layer to the bottom layer, meanwhile the soil porosity is decreased. The bulk density and the soil porosity are significant vary in different soil layers and are even in different plots. The soil erodibility presents a increased trend with the deepening of the layers.
    2. The soil's chemical properties also present theirs distinguishing features. The PH value is very high in this region for all plots' PH value are higher than 8. The top soil layer is lowest in pH value, because there are more trees or grasses' organism that can improve the soil's chemical properties. This region is short of soil organic matter for the average value is less than 1%. The content of soil organic matter is highest in the top layer and decreased from top layer to bottom layer. The soil available P is even in every plot's soil, but the available K is obviously vary in different plots. The soil salinity is very high in this region with the average of 1110.34mS/cm. The highest salinity is discovered in the top layer, and the trend is decreasing with the deepening of soil layer.
    3. The relationships among all soil physical and chemical properties are very perplexed. pH value, organic matter and clay particles all take great effects on available K. There are significant correlation among porosity, bulk density and available P. The properties that mostly related with soil water content are bulk density, porosity, clay particles and sandy particles. Besides, clay particles, sandy
    
    
    particles and PH value all exist closer relationship with soil erodibility.
    4. The soil microorganism amount and soil enzyme activity present diversity in all plots. There is significant discrepancy in different plots' soil microorganism amount. The trend of soil microorganism amount in soil's different layers is the amount decreasing when the layer deepen. The soil micro-organism amount is affected by soil bulk density, porosity and soil organic matter and exist some relationship with available K. The soil water content also affect microorganism amount by a large extent. In this region, different soil enzyme present different activities and principles. The invertase is mostly active, while three kinds of phosphates are all less active than other soil enzyme. Their trend in different soil layers of different plots is identical, they all decrease when the layer deepen. The factors of affecting each kind of soil enzyme are different. Especially, the soil enzyme present the closest relationship with the soil amount of organic matter. This region' soil can be divided by two groups throu
    gh their characteristics of microorganism amount and soil enzyme.
引文
[1]张万儒.国外森林土壤研究现状与趋向.世界林业研究,1990,(2):21~30
    [2]张万儒.森林土壤研究进展.土壤,1991,23(4):214~217
    [3]王庆仁.森林土壤研究的动态及展望.山东林业科技,1991,(2):41~43
    [4]吴珊眉.土壤生态学及其发展近况.土壤,1991,23(4):198~201
    [5]王贤忠.土壤植物营养化学的研究现状和发展趋势
    [6]陈金林等.杉木、马尾声松、甜槠等林分下土壤养分状况研究.林业科学研究,1998,11(6):586~591
    [7]林先贵.土壤微生学的研究进展和发展方向.土壤学进展,1993
    [8]何振立.土壤微生物量的测定方法:现状和展望.土壤学进展,1994,22(4)
    [9]杜国坚等.杉木连载林地土壤微生物区系及其生化特性和理化性质的研究.浙江林业科技,1995,15(5):14~19
    [10]曾思齐等.湘东丘陵区次生林土壤微生物的分布及酶的活性研究.中南林学院学报,1998,18(2):20~23
    [11]胡建忠.人工沙棘林地土壤酶分布及其与土壤理化性状间关系的研究.沙棘,1996,9(2):22~28
    [12]戴伟,陈晓东.北京低山地区土壤酶活性与土壤理化性质的关系.河北林学院学报,1995,10(1):13~18
    [13]张其水,俞新妥.杉木连载林地土壤酶的分布特征研究.福建林学院学报,1990,10(4):377~381
    [14]张其水,俞新妥.杉木连载地营造不同混交林后的土壤生化特性及土壤肥力的研究.福建林学院学报,1990,10(3):197~205
    [15]杨劲松.土壤盐渍地球化学研究的进展及发展趋势.土壤,1991,23(4)
    [16]周学林.绰源林业局工程造林基地土壤分析.内蒙古林业调查设计,1990,(2)
    [17]胡海波等.泥质海岸防护林土壤酶活性特征研究.土壤学报,1998,35(1)
    [18]胡海波等.泥质海岸土壤酶活性与理化性质关系的研究.东北林业大学学报,1995,23(5)
    [19]胡海波等.亚热带基岩海岸防护林土壤的酶活性.南京林业大学学报,2001,25(4)
    [20]黄世伟.土壤酶活性与土壤肥力.土壤通报,1981,(4)
    [21]许景伟等.不同类型黑松混交林土壤微生物,酶及其与土壤养分关系的研究.北京林业大学学报,2000,22(1)
    [22]前进农场.前进农场志.宁夏:宁夏人民出版社,1992
    [23]徐汝莹.国营前进农场耕地土壤营养调查报告.1995
    [24]包祥福.宁夏农垦耕地土壤养分、盐分现状和变化趋势的调查研究.1995
    [25]肖慈英,阮宏华,屠六邦.下蜀主要森林土壤肥力的灰色关联分析与评价.南京林业大学学报,2000,24(增刊)
    [26]严昶生.土壤肥力研究方法.北京:农业出版社,1988
    [27]劳家柽.土壤农化分析手册,北京:农业出版社,1988
    [28]中科院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社,1978
    [29]关松萌.土壤酶及其研究法.北京:中国科学出版社,1987
    [30]许光辉,郑洪元.土壤微生物分析手册,北京:农业出版社,1986
    [31]中国林学会,中国土壤学会,森林土壤专业委员会主编.森林与土壤.北京:中国科学技术出版社,1992
    [32]周晓峰.中国森林与生态环境.北京中国林业出版社,1999
    [33]William L. Dritchett. 森林土壤与经营.台湾:国立编译馆
    
    
    [34]高维森,王佑民.柠条人工林地土壤肥力的评价.青海农林科技,1998,(3)
    [35]王生芳,何世玉.柠条人工林地土壤肥力的评价.青海农林科技,1998,(3)
    [36]胡建忠.黄土高原沟壑区人工沙棘林土壤抗蚀性研究.沙棘,1999,12(1)
    [37]邱仁辉,杨玉盛,李振问等.留杉栽阔模式林分土壤腐殖质及肥力特性研究.东北林业大学学报,1998,26(6)
    [38]肖育贵,胡震宇.不同林型土壤微生物种群数量及养分变化分析.四川林业科技,1997,18(4)
    [39]王理平,刘再清.杉木桤木混交林土壤酶与土壤肥力的研究.林业科技通讯,1998,(2)
    [40]欧阳勋志,张志云,蔡学林.岩性,地形,土壤与林木生长关系.江西农业大学学报,1997,19(6)
    [41]Costantini A.昆土兰东南部沿海低地未耕作、压实和耕作过的土壤渗透抗性,容重和含水量之间的关系.New Zealand Journal of Forestry Science(新西兰),1996,26(3)
    [42]高桥辉昌.阔叶树种混交对扁柏林分土壤化学性质的影响.日本.日本林学会志,1996,78(3)
    [43]Anderson T.在不同pH条件下的落叶林土壤中微生物生物量C的估侧.Soil Biology and Biochemistry(英国),1997,29(7)
    [44]Haron K..马来西亚西部油棕榈林土壤微生物生物量和有机质动态.Soil Biology and Biochemistry,1998,30(5)
    [45]Copoê.影响森林土壤肥力的微生物因子和林分的产量.ecoe eí èe,1998,(1)
    [46]Bauhus J.加拿大魁北克省南部北方森林的树种、林龄和土壤类型对土壤微生物生物量的影响.Soil Biology and Biochemistry,1998,30(8/9)
    [47]陈隆亨,曲耀光.河西地区水土资源及其合理利用,北京:科学出版社,1992,143~207
    [48]樊自立,新疆土地开发对生态与环境的影响及对比研究.北京:气象出版社,1996,65~140
    [49]新疆荒地资源综合考察队.新疆重点区荒地资源合理利用,新疆人民出版社,1985,40-78
    [50]赵哈林,黄孝文,何宗颖.科尔沁地区农田土壤沙漠化演变的研究.土壤学报,1996,33(3):242~248
    [51]朱震达,陈广庭.中国土地沙质荒漠化。北京:科学出版社,1994,126~136
    [52]刘新民,赵哈林等.科尔沁沙地风沙环境与植被.科学出版社,1996,9~5612
    [53]王根绪,程国栋.西北干旱区土壤的生态特征与变化.干旱区资源与环境,1999,13(2),14~22
    [54]刘茂松,鲁小珍,王汉杰等,宁夏平罗西大滩人类有序活动的环境效应及发展对策.南京林业大学学报(自然科学版),2001,25(3):83~88
    [55]鲁小珍,刘茂松,胡海波等,宁夏沙湖风景区的生态环境问题与对策.南京林业大学学报(自然科学版),2001,25(3):89~92
    [56]苏顺.沙湖土地利用史及开发前景研究.宁夏农林科技,2001,(5):31~33
    [57]毅红,吴忠.回归预测理论及EXCEL解法.上海工程技术大学学报,2000,14(2):132~138
    [58]郭文久.M i c r o s o f t E x c e l方差分析的使用.2000,15(1):9~13
    [59]陶文信.E x c e l在方差分析中的应用.郑州航空工业管理学院学报(社会科学版),2002,21(1):42~44
    [60]潘正义.用EXCEL解回归问题.天津农业大学学报,1997,4(2):41~42
    [61]张之果.EXCEL软件在实验室数据处理中的应用.冶金分析,1998,18(1):46~48
    [62]林德光.经典试验设计的多元分析及其SAS实施.热带作物学报,2000,20(1):65~79
    [63]徐夕水.畜牧兽医试验数据的计算机处理——实用统计分析SAS程序17则.畜牧与兽医,1998,30(5):212~214
    [64]李惠卓,张毅功,伊宏岩.白石山森林土壤有机质及氮、磷、钾养分状况研究.河北林果研究.1997,12(2):114~117
    [65]王根绪,程国栋.西北干旱区土壤的生态特征与变化.干旱区资源与环境,1999,13(3):14~22
    
    
    [66]王根绪,程国栋.西北干旱区土壤资源特征与可持续发展.地球科学进展.1999,14(5):492~497
    [67]李松岗.实用生物统计.北京:北京大学出版社,2002,3
    [68]梅长林,周家良.实用统计方法.北京:科学出版社,2002,2
    [69]唐守正.多元统计分析方法.北京:中国林业出版社,1998
    [70]董麓.数据分析方法.东北财经大学出版社,2001,11
    [17]何晓群.现代统计方法与应用.北京:中国人民大学出版社,1998
    [72]王周琼,李述刚,程心俊.荒漠绿洲农田生态系统中养分循环.北京:科学出版社,2002,2
    [73]Barg-AK, Edmonds-RL. Influence of partial cutting on site microclimate, soil nitrogen dynamics, and microbial biomass in Douglas-fir stands in western Washington. Canadian-Journal-of-Forest-Research, 1999, 29: 6, 705-713.
    [74]Laffan-MD, Grant-JC, Hill-RB. Some properties of soils on sandstone, granite and dolerite in relation to dry and wet eucalypt forest types in northern Tasmania. Tasforests, 1998, 10: 49-58.
    [75]Niklinska-M, Maryanski-M, Laskowski-R.Effect of temperature on humus respiration rate and nitrogen mineralization: implications for global climate change. Biogeochemistry, 1999, 44: 3, 239-257.
    [76]Mottonen-M, Jarvinen-E, Hokkanen-TJ. Spatial distribution of soil ergosterol in the organic layer of a mature Scots pine (Pinus sylvestris L.) forest. Soil-Biology-and- Biochemistry, 1999, 31: 4, 503-516.
    [77]Ni-Jian, Chen-ZhongXin, Dong-Ming. An ecogeograppical regionalization for biodiversity in China. Acta-Botanica-Sinica, 1998, 40: 4, 370-382.
    [78]Papaskiri-T, Shuravilin-A, Nikiforov-P. Regulating the fertility of land on slopes by ecologically-based soil-protection measures. Mezhdunarodnyi- Sel'skokhozyaistvennyi- Zhuraal, 1998, No. 1: 20-24.
    [79]Martijena-NE. Soil properties and seedling establishment in soils from monodominant and high-diversity stands of the tropical deciduous forests of Mexico. Journal-of-BiogeograpHy, 1998, 25: 4, 707-719.
    [80]Jalyeoba-IA. Changes in soil properties related to conversion of savannah woodland into pine and eucalyptus plantations, Northern Nigeria. Land-Degradation-and- Development, 1998, 9: 3, 207-215.
    [81]Breemen-N-van, Finzi-AC, Canham-CD. Canopy tree - soil interactions within temperate forests: effects of soil elemental composition and texture on species distributions. Canadian-Journal-of-Forest-Reseerch. 1997, 27: 7, 1110-1116.
    [82]Sollins-P. Factors influencing species composition in tropical lowland rain forest: does soil matter? Ecology, 1998, 79: 1, 23-30.
    [83]Januszek-K. Some chemical properties of soils of selected sites of fir (Abies alba Mill.) varying in vitality in southern Poland. Acta-Agrada-et-Silvestria.-Series-Silvestris,1990, publ. 1991, 29: 3-15.
    [84]Arcak-S, Haktanir-K, Karaca-A .The relationships between some ecological and chemical properties and enzyme activities in soils of Soguksu National Park. Turkish-Journal-of-Agriculture-and-Forestry, 1997, 21: 1, 35-40.
    [85]Adderley-WP, Jenkins-DA, Sinclair-FL. The influence of soil variability on tree establishment at an experimental agroforestry site in North East Nigeria. Soil-Use-and- Management, 1997, 13: 1, 1-8.
    [86]Kaushal-R, Bhandari-AR, Tripathi-D. Soil water retention characteristics of some soils under forests in temperate zone at the Himalayas. Journal-of- the- Indian-Society- of- Soil- Science, 1996, 44: 1, 9-12.
    [87]Connell-MJ, Raison-RJ, Khanna-PK. Nitrogen mineralization in relation to site history and soil properties for a range of Australian forest soils. Biology- and- Fertility- of- Soils, 1995, 20: 4, 213-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700