用户名: 密码: 验证码:
地面覆盖法调节土壤温度状况的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塑料薄膜覆盖是提高土壤地温,保持土壤墒情的有效措施,这是通过阻断水分流通,改变土壤对太阳辐射的吸收-反射比率和地表长波辐射系数,以调节地面吸热和蒸发条件,达到改善地层水分和热状况的方法。本文就该方法在位于深季节冻土区的祁连山林区的适应性问题,包括促进融化和提高土温的效果进行了初步的分析。
     (1)通过分析最新相关文献资料,总结不同坡向、不同坡度、不同下垫面形式等条件对冻土区土壤的水热状况的影响规律;
     (2)总结了根据气象学基本原理和太阳辐射原理从理论上计算土壤表面的直接太阳辐射强度;以及考虑海拔高度和纬度影响的不同坡向、坡度下的气温计算方法;
     (3)在以上工作的基础上,利用分析软件计算了裸地在年内的冻融过程特点,并和实测资料比较验证了方法可行性。然后根据祁连山林区的具体气象和地理参数,对覆盖影响下的冻融过程进行了模拟计算,发现覆盖能减小最大冻结深度,提前表层融化时间。
Polyethylene mulch is an efficient method for raising soil temperature and maintaining soil moisture content, which has been widely used worldwide to improve the hydrothermal regime of soil and increase crop yield, as it eliminates evaporation by blocking moisture transfer and has a greenhouse effect on the underlying soil by changing the albedo of the ground surface and influencing the long wave radiation from the ground surface. Here we study the applicability of this method in the forest regions in the Qilianshan Mountain, including its ability to promote soil thawing and improve soil temperature.
     (1) Based on a thorough retrieval and systematic analysis of the related literature, the effects of different factors on the hydrothermal regime of soils are reviewed;
     (2) The method for calculating the net radiation on soil surface according to the basic principle s of meteorology and solar radiation theory, and that for calculating the air temperature at different latitude and elevation with various slopes are summarized
     (3) The annual freezing-thawing cycle from a bare soil surface is simulated using a commercial software with the appropriate climate and other factor values of the forest regions in the Qilianshan Mountain, and the results compared are with in situ data in the literature to prove applicability of the method and validity of coefficient values. Then, the thermal regime in the ground covered by Polyethylene mulch using the same simulation method and coefficient values, it is found that Polyethylene mulch can decrease the maximum frozen depth and accelerate the thawing from the frozen ground surface in spring.
引文
1.李宝庆.土壤水研究的进程和展望.地理研究, 1989, 8(3): 102-108
    2.雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社, 1998.
    3.康红莉.祁连山林区土壤水分生态研究.甘肃农业大学, 2003.
    4.刘旻霞.祁连山青海云杉林水文效应研究.甘肃农业大学, 2003.
    5.中国农业全书(甘肃卷).北京:中国农业出版社, 1997.
    6.关志成,段元胜.寒区流域水文模拟研究.冰川冻土, 2003 , 25 (增刊2): 266 - 272.
    7.高艳红,程国栋,尚伦宇,等.耦合冻土方案的大气模式对祁连山区春季土壤状况的模拟.冰川冻土, 2007, 29(1): 82-90
    8.周幼吾,郭东信,邱国庆,等.中国冻土.北京:科学出版社. 2000.
    9. Woo M K, Winter T C. The role of permafrost and seasonal frost in the hydrology of northern wetlands in North America. Journal of Hydrology, 1993, 141: 5-31.
    10.刘兴聪.青海云杉.兰州:兰州大学出版社, 1992.
    11.张掖森管局寺大隆林场科研组.土面增温剂在青海云杉全光育苗中的应用效果初报.甘肃林业科技, 1979 (3):
    12.刘永忠,张克强,王根全,等.旱地农业覆盖栽培技术研究进展.中国农学通报, 2005, 21(5): 202-205.
    13.中国地膜覆盖栽培研究会.地膜覆盖栽培技术大全.北京:农业出版社, 1988.
    14.隋红建,曾德超.地面覆盖应用与研究的现状及发展方向.农业工程学报, 1990, 6(4): 26-34.
    15.陈奇恩.中国塑料薄膜覆盖农业.中国工程科学, 2002, 4(4): 12-15, 21.
    16.张德奇,廖允成,贾志宽.旱区地膜覆盖技术的研究进展及发展前景.干旱地区农业研究, 2005, 23(1): 208~213
    17.隋红建,曾德超,陈发祖.不同覆盖条件对土壤水热分布影响的计算机模拟I-数学模型.地理学报, 1992, 47(1): 74-49
    18.王树森,邓根云.地膜覆盖增温机制的研究.中国农业科学, 1991, 24 (3) : 74- 78.
    19.王俊,李凤民,宋秋华,等.地膜覆盖对土壤水温和春小麦产量形成的影响.应用生态学报, 2003, 14(2): 205- 210.
    20.潘渝,郭谨,李毅.地膜覆盖条件下的土壤增温特性.水土保持研究,2002, 9(2): 130-134.
    21.李建奇.覆膜对春玉米土壤温度、水分的影响机理研究.耕作与栽培, 2006, (5):47-49, 44
    22. Anikwe M A N, Mbah C N, Ezeaku P I et al. Tillage and plastic mulch effects on soil properties and growth and yield of cocoyam (Colocasia esculenta) on an ultisol in southeastern Nigeria. Soil and Tillage Research, 2007, 93(2): 264-272.
    23. Dahiya R, Ingwersen J, Streck T. The effect of mulching and tillage on the water and temperature regimes of a loess soil: Experimental findings and modeling. Soil and Tillage Research, 2007, 96(1-2): 52-63
    24. Ramakrishna A, Tam H M, Wani S P, et al. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Research, 2006, 95(2-3): 115-125.
    25.王树森,邓根云.地膜覆盖土壤能量平衡及其对土壤热状况的影响.中国农业气象, 1989, 10(2): 20-25
    26. Unger P W. Surface residue , water application and soil texture effects on water accumulation . Soil Science Society of America Journal, 1976, 40: 298-300.
    27. Tolk J A, Howell T A, Evett S R . Effect of mulch ,irrigation and soil type on water use and yield of maize . Soil & Tillage Research, 1999 , 50: 137-147.
    28. Jia S N , Paul W. Ungerb. Soil water accumulation under different precipitation , potential evaporation , and straw mulch conditions .Soil Science Society of America Journal, 2001, 65: 442 448.
    29.侯连涛,焦念元,韩宾,江晓东,李增嘉.不同覆盖方式对土壤水分分布的影响.灌溉排水学报. 2007, 26(1): 47-50.
    30.曹建生,张万军,刘昌明,等.石子和秸秆覆盖条件下降雨水量转化特征试验研究.水利学报, 2007, 38(3): 378-382
    31.王康,沈荣开,黄介生.地膜覆盖条件下冬小麦耗水量计算及田间试验研究.水利学报, 2000, 31(10): 87-91
    32. Chen S Y, Zhang X Y, Pei D, et al. Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: field experiments on the North China Plain. Annals of Applied Biology, 2007, 150 (3): 261-268.
    33.李凤民,鄢珣,王俊,等.地膜覆盖导致春小麦产量下降的机理.中国农业科学, 2001, 34(3): 330-333.
    34.黄友谦,程诗杰,陈泽鹏.数值试验.北京:高等教育出版社,1989.
    35. Patankar S V, Spalding D A. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J of Heat and Mass Transfer, 1972, 15(10): 1787-1806.
    36.陶文铨.数值传热学的近代进展.北京:科学出版社, 2000.
    37. Roache P J. Fundamentals of Computational Fluid Dynamics. New Mexico: Hermosa publisher, 1998.
    38.张涤明,蔡崇喜,章克本,等.计算流体力学.广州:中山大学出版社, 1991.
    39. Mahrer Y. Prediction of soil temperatures of a soil mulched with transparent polyethylene. J Appl Meteorol, 1979, 18(10): 1263-1267.
    40. Mahrer Y, Katan J. Spatial soil temperatures regime under transparent polyethylene mulch, numerical and experimental studies. Soil Sci. 1981, 131: 82-87.
    41. Mahrer Y, Naot O, Rawitz E, et al. Temperature and moisture regimes in soils mulched with transparent polyethylene. J Soil Sci Soc Am, 1984, 48 (2): 362-367.
    42. Chung S O, Horton R. Soil heat and water flow with a partial surface mulch. Water Resour Res, 1987, 23(12): 2175–2186
    43. Ham J M, Kluitenberg G J. Modeling the effect of mulch optical properties and mulch-soil contact resistance on soil heating under plastic mulch culture. Agricultural and Forest Meteorology, 1994, 71(3-4): 403-424
    44. Bristow K L, Campbell G S, Papendick R I, et al. Simulation of heat and moisture transfer through a surface residue-soil system. Agricultural and Forest Meteorology, 1986, 36 (3): 193-214 .
    45.陈发祖.土壤覆盖热效应的微气象研究.地理学报, 1980, 35(1): 68-75
    46.隋红建,曾德超,陈发祖.不同覆盖条件对土壤水热分布影响的计算机模拟II-有限元分析及应用.地理学报, 1992, 47(2): 181-187
    47.王康,黄介生.塑料薄膜覆盖时土壤内水热传输模拟.灌溉排水, 1999, 18(1): 32-38
    48.吴从林,黄介生,沈荣开.地膜覆盖条件下SPAC系统水热耦合运移模型的研究.水利学报, 2000,31(11): 89-96
    49.孙景生,陈玉民,康绍忠,等.夏玉米田水热耦合运移的数值模拟.灌溉排水, -1995, 14(3): 24-29
    50. Zhang, S L, L?vdahl L, Grip H, et al. Modelling the effects of mulching and fallow cropping on water balance in the Chinese Loess Plateau. Soil and Tillage Research, 2007,93(2): 283-298.
    51. Wu C L, Chau K W, and Huang J S. Modelling coupled water and heat transport in a soil–mulch–plant–atmosphere continuum (SMPAC) system. Applied Mathematical Modelling, 2007, 31(2): 152-169.
    52.崔托维奇H A.冻土力学.张长庆,朱元林译.北京:科学出版社, 1985.
    53. Seyfried M S, Murdock M D. Use of air permeability to estimate infiltrability of frozen soil. J Hydrol, 1997, 202: 95–107 .
    54. Beskow G. Soil freezing and frost heaving with special applications to roads and railroads. Swedish Geological Society, C,No. 375, Year Book No. 3 (translated by J. O. Osterberg). Historical Perspectives in Frost Heave Research, USA Cold Regions Research and Engineering Laboratory, Special Report 91-23, 1935. 41-157.
    55. Edlefsen N E, Andersen A B C. Thermodynamics of soil moisture. Hilgardia, 1943,15: 31–298.
    56. Kay B D, Groenevelt P H. On the interaction of water and heat transport in frozen and unfrozen soils: I. Basic theory; the vapor phase. Soil Sci. Soc. Am. Proc., 1974, 38: 395–400.
    57. Groenevelt P H, Kay B D. On the interaction of water and heat transport in frozen and unfrozen soils: II. The liquid phase. Soil Sci. Soc. Am. Proc., 1974, 38: 400–404.
    58. Harlan R L. Analysis of coupled heat-fluid transport in partially frozen soil. Water Resour. Res., 1973, 9: 1314–1323.
    59. Sheppard M, Kay B, Loch J. Development and testing of a computer model for heat and mass flow in freezing soils. In: The 3rd International Conference on Permafrost , Vol . 1, Edmonton : Alberta , 1978. 76 - 81
    60. Fukuda M, Nakagawa S. Numerical analysis of frost heaving based upon the coupled heat and water flow model. In: The 4th International Symposium on ground freezing. Rotterdam: Balkema , 1985. 109- 117.
    61.雷志栋,尚松浩,杨诗秀,等.地下水浅埋条件下越冬期土壤水热迁移的数值模拟.冰川冻土, 1998, 20(1): 52 - 54.
    62. O’Neill K, Miller R D. Numerical solutions for a rigid2ice model of secondary frost heave [R] . CRREL Report , 1982 , 82– 13
    63. Gorelik J B, Kolunin V S, Reshetnikov A K. Rigid ice model and stationary growth of ice. In: Lewkowicz A G, Allard M. The 7th International Permafrost Conference. Canada : Laval University, 1998 , 327 - 333.
    64. Konrad J M, Morgenstern N R. A mechanistic theory of ice formation in fine grained soils. Canadian Geotechnical Journa , 1980, 17: 473 - 486.
    65. Konrad J M, Morgenstern N R. The segregation potential of a freezing soils. Canadian Geotechnical Journal, 1981, 18: 482 - 491.
    66. Jansson P E, Halldin S. Soil water and heat model: Technical description. Swedish Coniferous Forest Proj. Tech. Rep. 26. Swedish University of Agricultural Sciences, Uppsala, Sweden. 1980.
    67. Lykosov V N, Palagin E G. Method and example of computation of heat and moisture transport in freezing soil in the presence of a snow cover. Sov. Hydrol.: Sel. Pap, 1980, 19: 69–73.
    68. Guymon G L, Berg R L, Hromadka T V. Mathematical model of frost heave and thaw settlement in pavements. CRREL Report 93-2. CRREL, Hanover, NH. 1993.
    69. Lytton R L, Pufahl D E, Michalak C H. An integrated model of the climatic effects in pavements. FHWA Rep. RD-90–033. Federal Highway Administration, McLean, VA. 1993.
    70. Flerchinger G N, Saxton K E. Simultaneous heat and water model of a freezing snow-residue-soil system I. Theory and development. Trans. ASAE, 1989, 32: 565–571.
    71. Flerchinger G N, Hanson C L, Wight J R. Modeling evapotranspiration and surface energy budgets across a watershed. Water Resour. Res., 1996, 32: 2539–2548.
    72.康尔泗.寒区和干旱区水文研究的回顾和展望.冰川冻土, 1998 , 20 (3) : 238- 244.
    73.杨志怀,杨针娘,王强.祁连山冰沟流域径流分析与估算.冰川冻土, 1992 , 14 (3) : 251 -257.
    74.张学成,杨针娘.祁连山冰沟流域水量平衡初探.冰川冻土, 1991 , 13 (1) : 35 - 42.
    75.杨针娘,杨志怀,梁凤仙,等.祁连山冰沟流域冻土水文过程.冰川冻土, 1993 , 15 ( 2) : 235 -241.
    76.曹真堂,王强,祁连山冰沟实验流域径流与气象要素的关系.中国科学院兰州冰川冻土研究所集刊,第7号, 1992 : 101 - 110.
    77.杨针娘.祁连山黑河流域水量平衡与水资源.中国科学院兰州冰川冻土研究所集刊,第7号, 1992 : 133 - 147.
    78.杨针娘,杨志怀,张学成,祁连山冰沟寒区径流及产流模式.中国科学院兰州冰川冻土研究所集刊,第7号, 1992 : 91 - 100.
    79.杨针娘,曹真堂,王强,祁连山黑河流域降水时空分布特征.中国科学院兰州冰川冻土研究所集刊,第7号, 1992 : 121 - 132.
    80.杨针娘,王强,朱守森.祁连山北坡寒区水文对气候变化的响应.冰川冻土, 1996 , 18 (增刊) : 305 - 313.
    81.张学龙,车克钧,王金叶,等.祁连山寺大隆林区土壤水分动态研究.西北林学院学报, 1998, 13(1): 1-9.
    82.常宗强,王有科,席万鹏.祁连山水源涵养林土壤水分的蒸发性.甘肃科学学报, 2003, 15(3): 68-72.
    83.葛双兰,王梅桂,张立.祁连山(北坡)林区气候特征分析.甘肃林业科技, 2005, 31(3): 1-3.
    84.常学向,王金叶,金博文,等.祁连山林区季节性冻土冻融规律及其水文功能研究.西北林学院学报, 2001, 16(s): 26-29.
    85. Dickinson W C, Cheremisinoff P M. Solar Energy Technology Handbook. London: Butterworths, 1980.
    86.库德里雅采夫B A.工程地质研究中的冻土预报原理.兰州:兰州大学出版社, 1992
    87. Zhang T J. Influence of the seasonal snow cover on the ground thermal regime: An overview. Reviews of Geophysics, 2005, 43, RG4002, doi:10.1029/2004RG000157.
    88.程国栋.局地因素对多年冻土分布地影响及其对青藏铁路设计的启示.中国科学(D辑), 2003, 33(6): 602~607.
    89.马巍,程国栋,吴青柏.多年冻土地区主动冷却地基方法研究.冰川冻土, 2002, 24(5): 579~587.
    90. IPCC. 2001, Climate Change 2001: The Scientific Basis, Summary for Policymakers and Technical Summary of working GroupⅠReport. Eds. By HoughtonJ T, Ding Yihui, D. Griggs etal. Cambridge University Press . 1998.
    91.秦大河,丁一汇,苏纪兰,等.中国气候与环境演变评估(I):中国气候与环境变化及未来趋势.气候变化研究进展, 2005, 1(1): 4-9
    92.金会军,李述训,王绍令等.气候变化对中国多年冻土和旱区环境的影响.地理学报. 2000. 3.
    93.田康斌.岛状多年冻土地区路基路面稳定性研究.中国优秀博硕士学位论文全文数据库.1999.
    94.王可丽,程国栋等.青藏铁路沿线地表和路基表面热力学模式(Ⅱ)无云大气条件下模拟试验结果分析.冰川冻土2004. 26(2):171-176.
    95. http://sky.hzau.edu.cn/BookPath/chapter302.htm
    96.姚丽华.气象学.北京.中国林业出版社. 1992.
    97.高国栋,陆渝蓉.中国地表面辐射平衡与热量平衡.北京:科学出版社, 1982.
    98.汤懋苍,程国栋.青藏高原近代气候变化及对环境的影响.北京.科学出版社. 1998.
    99.王铁行.多年冻土区路基计算原理及临界高度研究.长安大学博士论文. 2001.
    100.全晓娟.青藏铁路抛石护坡的冷却机理及新型护坡研发.中国科学院博士研究生学位论文. 2005
    101. Kondratyev V.G.,1996. New methods of strengthening roadbed bases on very icy permafrost soils. Proceedings of international symposium on cold regions engineering, 7-10.
    102. Duffie J A, Beckman W A. Solar Engineering of Thermal Process. New York: John Wiley & Sons, 1991.
    103.刘勇,邹松兵.祁连山地区高分辨率气温降水量分布模型.兰州大学学报(自然科学版), 2006, 42 (1): 7-12
    104.伍光和,江存远.甘肃省综合自然区划.兰州:甘肃科学技术出版社, 1998.
    105. Penman H L. Evaporation in nature. Reports on Progress in Physics, 1947, 11(1): 366-388.
    106. Penman H L. Vegetation and Hydrology, Commonwealth Agricultural Bureaux, Farnham Royal, 1963.
    107.杨针娘,刘新仁,曾群柱,等.中国寒区水文.北京:科学出版社, 2000.
    108.苏联科学院西伯利亚分院冻土研究所.普通冻土学.郭东信,刘铁良,张维信,等译.北京:科学出版社, 1988.
    109.李东庆,吴紫汪,朱林楠,等.花石峡长石头山多年冻土及其退化预测.自然科学进展, 1999, 9(4):346-350.
    110.张文煜,袁九毅.大气探测原理与方法.北京:气象出版社, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700