用户名: 密码: 验证码:
互穿网络结构高吸水树脂的合成与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以过硫酸钾(KPS)为引发剂,N,N'-亚甲基双丙烯酰胺(MBA)为交联剂,以丙烯酸羟丙酯(HPA)与2-丙烯酰胺-2-甲基丙磺酸(AMPS)的共聚物(P(HPA/AMPS))为互穿聚合物,采用溶液聚合,合成了一种具有互穿网络结构的新型高性能聚丙烯酸钠高吸水树脂(PSA-IP-P(HPA/AMPS))。讨论了引发剂用量、交联剂用量、反应温度、单体中和度、互穿聚合物的组成及用量对高吸水树脂PSA-IP-P(HPA/AMPS)性能的影响。比较了PSA-IP-P(HPA/AMPS)与聚丙烯酸钠高吸水树脂(PSA)的吸液性能。研究了其红外光谱特性和热性能。
     红外光谱研究表明,PSA-IP-P(HPA/AMPS)树脂吸水前后在1290cm~(-1)处出现了明显的-S=O伸缩振动吸收峰,PSA树脂则无此吸收峰出现。热重分析表明,PSA-IP-P(HPA/AMPS)和PSA的失重趋势很相似,但在400℃附近,相对PSA,前者出现了较明显的失重。结合红外光谱和热分析结果,认为P(HPA/AMPS)和PSA形成了互穿网络结构。
     对高吸水树脂吸液性能的研究表明,PSA-IP-P(HPA/AMPS)吸去离子水和生理盐水的能力和PSA相比有较大幅度的提高。也优于相同单体用量的丙烯酸(AA)、HPA、AMPS交联共聚的高吸水树脂。当引发剂用量为单体用量的0.1%,交联剂用量为单体用量的0.02%,反应温度为70℃,单体中和度为70%,互穿聚合物的重均分子量为220万、HPA和AMPS的质量比为0.5、用量为2.4%时,合成的PSA-IP-P(HPA/AMPS)高吸水树脂具有最佳的吸水能力。其吸去离子水量为2075ml/g,吸生理盐水量为115ml/g,分别比PSA高36.1%和35.3%。
     本文研究了影响PSA-IP-P(HPA/AMPS)树脂吸水能力的各因素。结果表明:
    
    盐对树脂的吸水能力影响较大,随着盐浓度的增加,树脂的吸水能力急剧下降,
    但当盐浓度大于0.5%以后下降趋于平稳。盐的种类及金属离子的价态不同对树
    脂吸水能力的影响程度也不同(Na+    水的能力不同,当pH为6时,其吸收能力达到最佳,但pH在5一9之间树脂的
    吸水量均大于1000ml/g。树脂的吸水能力几乎不受水温的影响。
     文中还研究了该树脂的其他性能如吸水速度、保水能力、稳定性等。结果
    表明,树脂的吸水速度受粒径影响较大,其大小顺序为20目<20一60目<60一120
    目。在一10℃下经过5次反复冷冻一解冻过程,其性能基本不变。在不同温度下
    加热处理1小时,在100℃以前树脂的吸水能力变化不大;100℃下经过5小时
    的处理,吸水率仅下降约10%。研究结果还表明,树脂的自然保水性、热保水
    性、加压保水性均较好。
As a new superabsorbent with high performance, the sample of interpenetrating polymer network, i.e., PSA-IP-P(PHA/AMPS), coming from poly(sodium acrylate) (PSA) and the copolymer of hydroxypropyl acrylate (HPA) and 2-acrylamido-2-methy propone sulfonate (AMPS) was prepared by aqueous solution polymerization, in which potassium persulfate (KPS) was used as initiator and N,N'-methylene bis-acrylamid (MBA) as cross-linking agent. The factors influencing the water absorption capacities of the superabsorbent such as the amount of initiator, crossing agent and P(HPA/AMPS), the polymerizing temperature, the neutralizing degree of AA, and the component of P(HPA/AMPS) were discussed. The water absorption capacities of PSA-IP-P(PHA/AMPS) and poly(sodium acrylate) (PSA) were compared, and their infrared spectra and thermal degradation behaviors were characterized.
    A band of S=O stretching vibration at 1290cm-1 could be observed in the FTIR spectra of PSA-IP-P(PHA/AMPS) before and after absorbing water, while it didn't appear in that of PSA. The thermogravimetric analysis of PSA-IP-P(PHA/AMPS) and PSA showed that their TG curves were similar. However, near 400℃ the former appeared a obvious weight loss, but not PSA. The FTIR and TG results showed that the interpenetrating network of P(HPA/AMPS) and PSA were formed.
    The research results of water absorbency showed that PSA-IP-P(PHA/AMPS) possessed higher water and 0.9% saline absorption capacities than PSA and terpolymer of SA, HPA and AMPS. The superabsorbent with the best water
    
    
    
    absorption could be synthesized by the following conditions: the polymerizing temperature was 70℃, the neutralizing degree of AA was 70%, the amount of initiator and cross-linking agent was 0.1% and 0.02% weight of monomers, respectively, and the amount of P(HPA/AMPS) (HPA/AMPS=0.5) was 2.4% weight of monomer, the average molecular weight of P(HPA/AMPS) was 2.2×106. The deion-water and 0.9% saline absorbency of PSA-IP-P(PHA/AMPS) superaborbent were 2075ml/g and 115ml/g, 36.1% and 35.3% higher than that of PSA, respectively.
    The factors influencing the water absorbability of PSA-EP-P(HPA/AMPS) were studied. It was shown that the water absorbency of superabsorbent was strongly affected by the concentration of salts. As the concentration of salt increases, the water absorbency of superabsorbent decreases rapidly. When the concentration of salt was higher than 0.5%, the decreasing trend was not so obvious. Different sort of salts and different valence state of ions influenced the water absorbency in different degree (Na+ < Mg2+ < Ca2+). The water absorbency of the superabsorbent was different when the absorbed water has the different pH value. When pH value was 6, its absorbency arrived the highest amount. However, in the region from pH5 to pH9, the water absorption of the superabsorbent was higher than 1000ml/g. The results also showed that the water absorbency of the superabsorbent was hardly affected by the test temperature.
    Other properties of the superabsorbent, such as the absorption rate, water-retention and stabilities, were studied. It was shown that the water absorption rate of superabsorbent was influenced by its particle size, in the range of 20-120 mesh, 20<20-60<120. After five frozen-defrozen processes at -10℃, the water absorbency of superabsorbent was no change. The water absorbency of superabsorbent hardly changed after one-hour heat-treatment at 100℃ and decreased 10% after five-hour heat-treatment. It also showed that the water retention of the superabsorbent was very good on the conditions of different temperature and pressure.
引文
1 邹新禧.超强吸水剂(第二版).化学工业出版社.北京.2002.
    2 Fresric L.Buchholz. Products of chemistry. J. Chem. Edu. 1996.73(6).512~515
    3 Walsh K, Gain B. Superabsorbent polymer-produces say growth is still in diapers. Chem. Week. 1997.159(32).23~23
    4 黄德绣,薛永青,邱豪等.高吸水性树脂——淀粉.丙烯酸钠接枝共聚物的合成及性能研究.高分子材料科学与工程.1991.(1).105~107
    5 Bakass M., Mokhlisse A. Absorption and desorption of liquid water by a superabsorbent polyelectrolyte: Role of polymer on the capacity for absorption of a ground. J. Appl. Polym. Sci. 2001.82(6). 1541~1548
    6 金益芬,麻立春.高吸水聚合物的应用与发展.化工新型材料.2001.29(5).6~8
    7 王国全.化学建材的功能化.化学建材.1997.13(1).31~31
    8 周效全.高分子吸水树脂在油田化学中的应用.钻采工艺.1998.21(5).66~67
    9 蔡会武,李侃社等.高吸水树脂作为油井堵水剂的初步研究.油田化学,2000,17(3).237-239.
    10 邹新禧.两性淀粉螯合剂吸附性能研究.功能高分子学报.1996.9(3).468~474
    11 张效林,薛伟明,王康等.高吸水树脂-醋酸纤维素膜包络体控制释放系统.化学工程.1997.25(4).21~25
    12 华君峰,钱孟平,谭春红.反相悬浮聚合法合成超强吸水剂.功能高分子学报.1996.9(4).589~596
    13 蒋笃孝,宋龄英,罗新祥.高吸水性树脂的制备及交联剂对树脂吸水性能的影响.化学与粘接,1998.(1).1-3
    14 Doo-Won Lim, Kee Jong Yoon,Sohk-Won Ko. Synthesis of AA-Based Superabsorbent Interpenetrated with Sodium PVA Sulfate. J. Appl. Polym. Sci. 2000.78.2525-2532
    15 Doo-Won Lim, Kyong-Geun Song,Kee-Jong Yoon et al. Synthesis of acrylicacid-based superabsorbent interpenetrated with sodium PVA sulfate using inverse-emulsion polymerization. Eur. Polym. J. 2002.38. 579-586
    16 罗晓峰,李绵贵,何培新.反相聚合法制备丙烯酸钠与丙烯酰胺共聚物吸水剂.精细化工.1993.22(11).745-747
    
    
    17 何培新,肖卫东,罗晓峰等.丙烯酸.丙烯酰胺的反相悬浮聚合及吸水性能的研究.高分子材料科学与工程.1993.9(4).23-27
    18 何培新,肖卫东,黄鹤等.高吸水性三元共聚树脂的合成及性能研究.高分子材料科学与工程.1999.15(6).65-68
    19 路建美,朱秀林,纪顺俊等.二元共聚高吸水性树脂的合成及性能.石油化工.1998.27(5).322-325
    20 宋彦凤,崔占臣,陈欣芳.耐盐性聚丙烯酸盐类高吸水树脂的制备.应用化学.1995.12(1).117-118
    21 崔英德,郭建维,廖列文等.二元共聚高吸水树脂的合成与溶胀性能.化工学报.2001.52(7).601-605
    22 郑延成,周爱莲,赵维鹏.溶液法合成高吸水树脂的条件优化.精细石油化工.1999.15.34~36
    23 M. Padmanabha Raju & K. Mohana Raju. Design and Synthesis of Superabsorbent Polymers[J]. J.Appl.Polym. Sci. 2001.80. 2635-3639
    24 竺亚斌,浦炳寅.耐盐性高吸水树脂的合成及性能研究.高分子材料科学与工程.1999.15(6).169-170.
    25 柳明珠,曹丽歆.耐盐性超强吸水剂制备.2001年全国高分子年会论文集 郑州a351-a353
    26 张健,孙民伟,张乐等.高吸水性树脂的耐盐性与凝胶强度的改善的研究.石油化工.2002.31(12).994~997
    27 朱秀林,顾梅,赵峰.高岭土-聚丙烯酸钠高吸水性复合树脂的合成及性能研究.高分子材料科工程.1994.10(5).46~49
    28 朱秀林,顾梅,倪新元.丙烯酸-丙烯酰胺共聚物和高岭土交联的吸水树脂的合成及性能研究.石油化工.1994.23(7).431-435.
    29 王进,于善普,李旭东.超高吸水树脂的吸水性和抗电解质性能的研究.印染.2000.(9).16-18
    30 路建美,朱秀林,王丽华等.微波法合成两性高吸水性树脂.石油化工.1997.26(3).152-155
    31 朱秀林,路建美.表面交联型高吸水性树脂的合成与性能研究.高分子材料科学与工程.1992.(1).27~30
    
    
    32 杨海燕.聚丙烯酸钠类吸水树脂表面性能的改进.精细化工.1997.14(3).27-29.
    33 Takede H., Taniguchi Y. Production process for highly water absorbable polymer. 美国专利. US 4 525 527, 1985-6-25.
    34 华峰君,钱孟平,谢少波.高单体浓度下自交联型聚丙烯酸盐类超强吸水剂的合成研究.功能高分子学报.1995.18(3).367-372.
    35 Ankush B. Argade, Nicholas A. Peppas. Poly(acrylic acid)-poly(vinyl alcohol) Copolymers with Superabsorbent Properties. J. Appl. Polym. Sci. 1998.70. 817-829.
    36 杨通在,何成,刘亦农等.高吸水树脂的辐射接枝制备和结构表征.高分子材料科学与工程.1998.14(4).123~124
    37 Suda Kiatkamjomwong, Phiriyathorn Suwanmwala. Partially hydrolyzed polyacrylamide-poly(N-vinylpyrrolidone) copolymers as superabsorbents synthesized by gamma irradiation. J. Appl. Polym. Sci. 1998.68. 191~203
    38 Suda Kiatkamjomwong, Kanlya Mongkolsawat, Manit Sonsuk. Synthesis and property characterization of cassava starch grafted poly[acrylamide-co-(maleic acid)] superabsorbent via γ-irradiation. Polymer. 2002.43.3915~3924
    39 林纪辰,黄毓礼,雄光超.光聚合法合成聚丙烯酸-丙烯酸钠高吸水树脂.北京化工大学学报.2001.28(2).26~29
    40 田大听,过俊石,谢洪泉.反向悬浮聚合法合成超强吸水剂.应用化学.1997.(5).15~18
    41 郁仁荣.高吸水率聚合物吸水剂的制法及装置.中国专利 CN1088941 1994
    42 任敬福,张林香等.一种超吸水树脂的制备方法.中国专利 CN 1080642 1994
    43 陈军武,赵耀明,严冰.水溶液聚合法制备高吸水树脂及NaCl对聚合反应的加速作用.高分子材料科学与工程.2000.16(3).64~66
    44 薛翠花,陈锡如.高吸水树脂的制备及性能研究.四川联合大学学报(工程科学版).1997.1(6).41~47
    45 路建美,朱秀林.高吸水性树脂的合成及性能研究.高分子材料科学与工程.1992.(1).35~39
    46 朱秀林,路建美,顾梅.内交联型高吸水性树脂的合成及性能研究.高分子材料科学与工程.1993.(4).18~22
    47 徐相凌,张志成,费宾等.丙烯酸钠反向乳液聚合.高分子学报.1998.(2).134~138
    48 张留成,刘玉龙.互穿网络聚合物.烃加工出版社.北京.1990.
    
    
    49 白渝平,杨荣杰,李建民等.PVA-PAA IPN水凝胶的制备及其溶胀性质研究.高分子材料科学与工程.2002.18(1).98~101
    50 Olga E. Philippova, Rudy Rulkens, Boris I. Kovtunenko et al. Polyacrylamide hydrogels with trapped polyelectrolyte rods. Macromolecules. 1998. 31.1168~1179
    51 Z. S. Liu, G. L. Rempel. Preparation of superabsorbent polymers by crosslinking acrylic acid and acrylamide copolymers. J. Appl. Polym. Sci. 1997.64. 1345~1353
    52 Junwu Chen,Yaoming Zhao. An efficient preparation method for surperabsorbent polymers. J Appl Polym Sci 1999.74. 119~124
    53 Makamura K. Studies on bound water in poly(vinyl alcohol) hydrogel by DSC and FT-NMR. Eur Polymer J. 1984.20(1).61~64
    54 李平,修国华.反向悬浮聚合反应制备高吸水性聚丙烯酸钠.精细石油化工.1998.(4).20~23
    55 刘廷栋,刘京.高吸水性树脂的吸水机理.高分子通报.1994.(3).181~185
    56 闫辉,张丽华,周秀苗.耐盐性高吸水树脂.化工新型材料.2001.29(12).11~13
    57 郑邦乾,张洁辉.高吸水性树脂粒径与性能的研究.高分子材料科学与工程.1994.(4).119~124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700