用户名: 密码: 验证码:
染料敏化二氧化钛薄膜电极的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文综述了湿化学太阳能电池的研究现状,在对其工作机理和存在问题等的总结基础上,针对染料吸附量不好的问题,提出向初始溶液中添加高聚物,以达到改善薄膜样品的微观结构,提高染料吸附量的目的。
     用溶胶凝胶浸渍-提拉法制备样品,以聚乙二醇(PEG)和羟基纤维素(HPC)作为添加剂,来改变样品的微观结构。对样品进行红外测试以研究添加剂对二氧化钛溶胶的作用机理。用电镜(SEM和TEM),椭偏仪和XRD研究TiO_2薄膜的微观结构。用光吸收谱的差谱来表征TiO_2薄膜的染料吸附性能,用I-V曲线测试TiO_2薄膜的光电化学性能。对以PEG为添加物的TiO_2薄膜样品的研究表明:PEG的加入得到了具有疏松多孔结构的TiO_2薄膜,但二氧化钛颗粒有些团聚。PEG的含量和热处理温度对TiO_2薄膜的微观结构均有影响。TiO_2薄膜的气孔率随PEG的加入量的增多而增大。在本研究范围内PEG含量为6.92×10~(-3)克PEG/克初始溶液样品的气孔率最高。450℃-550℃温度范围内热处理研究结果表明,500℃热处理样品具有最高气孔率。PEG的加入增加了染料的吸附量。具有最高气孔率的样品的染料吸附量最大。它的填充因子FF为0.359,比不加PEG的样品的填充因子高。所以,PEG改善了TiO_2薄膜样品的光电化学性能。
     对以HPC为添加物的TiO_2薄膜样品的研究表明:
     HPC的加入形成了粒径为20-120nm的TiO_2薄膜。少量HPC的加入使TiO_2薄膜的微观结构变的疏松,粒径降低。当HPC含量为3m时,粒径最小。HPC含量继续增加,TiO_2薄膜的结构又变的致密,粒径增大。本研究中小的二氧化钛晶粒导致了TiO_2的晶格畸变,进而增大了TiO_2的禁带宽度,表现在光吸收谱的蓝移。利用HPC凝胶的红外谱建立了HPC对TiO_2薄膜微观结构的影响机理的模型,并用此模型解释了HPC含量对TiO_2薄膜微观结构的影响规律。TiO_2薄膜表面的染料分子的吸附量也随HPC的加入量而改变。HPC含量为3m时,染料分子的吸附量最大。另外,TiO_2薄膜的填充因子也随HPC含量而变化,HPC含量为3m时,填充因子最大,为0.59,比未加添加剂和加PEG的TiO_2薄膜的都大。
     选填充因子最大的TiO_2薄膜电极组装了太阳能电池。测得电池的填充因子FF为0.393,光电转换效率为0.3%。填充因子和光电转换效率较低是因为所用
    
     浙江人学颀十学位论义
    导电基板的导电性不够好和电池组装过程中的工艺损失。
     另外,提出了复合薄膜电极的设想,制备了TIOZ/WO3多孔复合薄膜电极,
    其填充因子高于 TO。薄膜电极。
In the thesis, the principle, problems and prospect of the wet-type solar cells were reviewed. Polymers were added in the initial solution to adjust the microstructure of films and to improve the adsorption of dye.
    Titania films were prepared by the sol-gel dip-coating method, with polyethylene glycol(PEG) and hydroxypropylcellulose(HPC) used as the additives. The FTIR spectra were employed to investigate the anchoring mechanism of HPC on the titanium colloid. The microstructures of the films were analyzed by electrical microscope (SEM and TEM), ellipsometry and X-ray diffraction (XRD). The optical absorption spectra were used to investigate the dye adsorption property and the photoelectrochemical properties of titania films were measured via I-V analyzer. From the investigation of titania films with PEG as additive, several significant conclusions could be drawn: Titanium dioxide films with porous microstructure could be prepared using PEG as additive; almost no conglomeration were observed with the titanium particle ; the microstructure of titania films could be modulated by the amount of PEG and treating temperature; at the same time, the porosity of the film improved with the increase of PEG; For the specimen treated at different temperatures, the greatest porosity could be achieved when treated at 500癈; The adding of PEG could greatly increase the dye adsorption amount. In this work, the dye adsorption reached its highest value with the sample of the greatest porosity , with the fill factor (FF) of that sample was 0.359. Also, it was demonstrated that titanium films with PEG as additive showed better photoelectrochemical properties than titanium films without PEG.
    For the titania films with HPC as additive, we had the following opinions: Titania films with the particle size ranging from 20nm to 120nm could be obtained with HPC as dispersant; A little amount of HPC promoted the formation of a loose structure of the films and the decrease of particle size; The particle size hit the lowest point when the amount of HPC was 3m; The structure of titania films became denser and the particle size increased with further adding of HPC in the solution. When the
    -3 -
    
    
    
    particle size was small, the aberration of crystal lattice appeared and the bandgap energy increased, which resulted in the blue shift of absorption in the spectrum. The mechanism of HPC's influence on the microstructure was studied via FTIR spectrum. The adsorption of the dye on the titania films is affected by the amount of HPC. The adsorption amount was greatest when the amount of HPC was 3m, with FF was 0.59. FF of the HPC added titania film was better than that of the PEG added film and the films without any additives.
    At the basis of the above research, the sample with highest fill factor was chosen as electrode to fabricate solar cell. The FF was 0.393 and the n was 0.3%. the reason why FF and n. were lower than other solar cells was that the resistance of conducting substrate was high and the losses in the fabrication of the batteries .
    The bicomponent films electrode was brought forward. The TiCVWOs bicomponent film was fabricated and the photoelectrochemical property was measured. The result showed that fill factor of bicomponent films electrode was higher than fill factor of titania electrode.
引文
[1] Ralph, E.L., Solar cell development survey, Intersociety energy conversion engineering conference, (1968), 2, 116-121
    [2] Szlufcik, J., Nijs, J., Mertens, R., Van Overstraeten, R., High efficiency crystalline silicon solar cells for industrial application, Semiconductor Devices, (1996), 2733, 556-562
    [3] Hartiti, B., Slaoui, A., Muller, J.C., Siffert, P., Schindler, R., Reis, I., Wagne r, B., Eyer, A., Multicrystalline silicon solar cells processed by rapid thermal processing, 23rd IEEE Photovoltaic Specialists Conference, 10-14 May 1993, Louisville, KY, USA, Proceedings of 23rd IEEE Photovoltaic Specialists Conference, IEEE, (1993), 224-229
    [4] 吴建荣,杜丕一,韩高荣,寿瑾晖,张溪文,朱懿,非晶硅太阳能电池研究现状,材料导报,(1999),13(2),38-39
    [5] Sahai, R., Milnes, A.G., Heterojunction solar cell calculations, Solid-State Electron. (UK), (1970), 13(9), 1970
    [6] Geisz, J.F., Friedman, D.J., Ⅲ-N-V semiconductors for solar photovoltaic applications, Semicond. Sci. Technol. (UK), (2002), 17(8), 769-777
    [7] O'Rgan B., Grtzel M., A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films, Nature, (1991), 353(24), 737-740
    [8] Grtzel M., Photovoltaics: state of the art and perspectives for nanocrystalline injection cells, Elektrotech. Inf. tech. (Austria), (1997), 114(10), 579-586
    [9] 严东生,冯瑞主编,《材料新星——纳米材料科学》,湖南科学技术出版社,第1版,(1997).
    [10] 张立德,牟季美,《纳米材料科学》,辽宁科学技术出版社,第1版,(1994).
    [11] 韩高荣,汪建勋,杜丕一,张溪文,赵高凌,纳米复合薄膜的制备及其应用研究,材料科学与工程,(1999),17(4),1-6。
    [12] Hamaguchi, C., Mori, T., Wada, T., Terashima, K., Taniguchi, K., Miyatsuji, K., Hihara, H., Physics of nanometer structure devices, Microelectron. Eng. (Netherlands), (1984), 2(1-3), 34-43
    [13] Hirsch, A.A., Massalha, T., Galeczki, G., Magnetic surface, size and time effects
    
    in granular films of iron, J. Magn. Magn. Mater. (Netherlands), (1988), 75(3), 209-224
    [14] Katsuyama, T., Hiruma, K., Ogawa, K., Haraguchi, K., Yazawa, M., Optical properties of GaAs nano-whiskers, Jpn. J. Appl. Phys. Suppl. (Japan), (1994), 34(1), 224-231
    [15] Weller, H., Quantized semiconductor particles: a novel state of matter for materials science, Adv. Mater. (Germany), (1993), 5(2), 88-95
    [16] McCallum, D.S., Huang, X.R., Dawson, M.D., Boggess, T.F., Smirl, A.L., Hasenberg, T.C., Kost, A., Optical nonlinearities and ultrafast charge transport in all-binary InAs/GaA s strained hetero n-i-p-i's, J. Appl. Phys., (1991 ), 70(11), 6891-6897
    [17] Xie, Y.H., Wilson, W.L., Ross, F.M., Mucha, J.A., Fitzgerald, E.A., Macaulay, J.M., Harris, T.D., Luminescence and structural study of porous silicon films, J. Appl. Phys. ,(1992), 71(5), 2403-2407
    [18] Campet G., Azaiez C., Levy, F., Bourezc, H., Claverie, J., A 22% efficient
    [19] semiconductor/liquid junction solar cell-the photoelectrochemical behavior of n-WSe_2 electrodes in the presence of I/sub 2//I/sup -/in aqueous electrolyte, Act. Passive Electron. Compon. (UK), (1988), 13(1), 33-43
    [20] G. zhao., "Solar Energy Conversion",Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley &Sons, (1999) , 19, 638-648
    [21] G. Zhao, H.Kozuka, H.Lin, M.Takahashi, T. Yoko, Thin Solid Films, (1999), 340,125-131
    [22] V. Shklover & M. Grtzel, Ordering of Metal Complex Sensitizers on TiO_2 nanopowders: structure of interface organic/inorganic, SPIE, (1997), 3138, 96-106
    [23] 李斌,邱勇,染料敏化纳米太阳能电池,感光科学与光化学,(2000),18(4),336-347
    [24] 王毅,刘燕刚,陈建国,黄德音,有机电荷传输材料,感光科学与化学,(1999),17(1),73-84
    [25] Knodler R, Sopka J, Harbach F., Grunling, H.W., Photoelectrochemical cells based on dye sensitized colloidal TiO_2 layers, Sol. Energy Mater. Sol. Cells (Netherlands), (1993), 30(3), 277-281
    [26] Smestad G, Bignozzi, C., Argazzi, R., Testing of dye sensitized TiO_2 solar cells Ⅰ:
    
    experimental photocurrent output and conversion efficiencies, Sol. Energy Mater. Sol. Cells (Netherlands), (1994), 32(3), 259-272.
    [27] A.Hagfeldt, S.E.Lindquist, M.G rtzel, Charge carrier separation and charge transport in nanocrystalline junctions, Solar Energy Materials and Solar Cells, (1994), 32, 245-257
    [28] A.Hagfeldt, U.Bjrkstn, S.E.Lindquist, Photoelectrochemical Studies of Colloidal TiO_2-films: the charge separation process studied by means of action spectra in the UV region, Solar Energy Materials and Solar Cells, (1992), 27, 293-304
    [29] S.Y. Huang, G. Schlichthorl, A.J.Nozik, M. Grtzel, A.J.Frank, Charge recombination in dye-sensitized nanocrystalline titanium solar cells, J.Phys. Chem. B, (1997), 101, 2576-2582
    [30] Smithrick, J.J., Effects of thershock cycling on thin-film cadmium sulfide solar cells, nasa,TM-X-1819, (1969) (report)
    [31] Ratajczak, A.F. &Klucher, T.M., Simulated space environment test of a 25-cell cadmium sulfide thin-film solar-cell module, NASA-TM-X-2125; E-5942, (1971)
    [32] Kay, A., Grtzel, M., Artificial photosynthesis. Ⅰ. Photosensitization of TiO/sub 2/solar cells with chlorophyll derivatives and related natural porphyrins, J. Phys. Chem. (USA), (1993), 97(23), 6272-6279
    [33] M. Grtzel, Photoelectrochemical cells, nature, (2001), 414, 338-344.
    [34] R.Memming, Solar energy conversion by photochemical process, Electrochim. Acta, (1980), 25, 77-88.
    [35] K.Kato & A. Tsuge, Microstructure and crystallographic orientation of Anatase coatings produced from chemically modified titanium tetraisopropoxide, J.Am. Ceram. Soc., (1996), 79(6), 1483-1488
    [36] K.Kato& K.Niihara, Roles of polyethylene glycol in evolution of nanostructure in TiO_2 films, Thin Solid Films, (1997), 298, 76-82.
    [37] Shin, H., Collins, R.J., De Guire, M.R., Heuer, A.H., Sukenik, C.N., Synthesis and characterization of TiO_2 thin films on organic self-assembled monolayers. Ⅱ. Film formation via an organometallic route, J. Mater. Res., (1995), 10(3), 699-703
    [38] 余家国,赵修建,多孔TiO_2光催化纳米薄膜的制备和微观结构研究,无机材料学报,(2000),15(2),345-355
    
    
    [39] 汪剑炜,王正东,胡黎明,超分散剂的分子结构设计,化工进展,(1994),4,32-37
    [40] 王正东,胡黎明,超分散剂的作用机理及应用效果,精细石油化工,(1996),6,59-62
    [41] 王听,李镇江,杨丰科,侯耀永,周玉,单分散纳米氧化锆的制备,化工学报,(1999),50(4),519-523。
    [42] J.H.Jean, T.A.Ring, processing monosized TiO_2 powders generated with HPC dispersant, Am. Ceram. Soc. Bull., (1986), 65(12), 1574-1577
    [43] Hachfeld, E.A., Kim, Y. J., Francis, L.F., Dip coating of titanium ethoxide solutions, Mater. Lett. (Netherlands), (1994), 18(3), 141-147
    [44] Kinosita, K., Nishibori, M., Porosity of MgF_2 films-evaluation based on changes in refractive index due to adsorption of vapors, J. Vac. Sci. Technol., (1969), 6(4), 730-733.
    [45] Yoldas, B.E., Partlow, D.P., Formation of broadband antireflective coatings on fused silica for high power laser applications, Thin Solid Films (Switzerland), (1985), 129(1-2), 1-14.
    [46] Nishide, T., Mizukami, F., Effect of ligands on crystal structures and optical properties of TiO_2 prepared by sol-gel processes, Thin Solid Films (Switzerland), (1999), 353(1-2), 67-71.
    [47] W.J.Weng and L.Baptista, J.Materials. Sci, (1998), 9, 159-163.
    [48] K.Kato and A.Tsuge, Microstructure and crystalllgraphic orientation of Anatase coatings produced from chemically modified Titanium tetraisopropoxide, J.Am. Ceram. Soc., (1996), 79(6), 1483-1488.
    [49] 孙宏伟,钟顺和,TiO_2-聚乙烯复合膜的制备及红外光谱对其膜层结构的表征,膜科学与技术,(1997),17(5),43-47
    [50] 征茂平,金燕苹,吴桢干,金国良,顾明元,Sol-gel法制备TiO_2/PVP纳米复合材料及其表征,金属学报,(1999),11(35),11—15
    [51] 柯以侃,董慧茹,分析化学手册,第二版,北京,化学工业出版社,(1998)
    [52] 汪剑炜,王正东,胡黎明,化工进展,超分散剂的分子结构设计,(1994),4,32-37
    [53] Clayfield, E.J., Lumb, E.C., Mackey, P.H., Retarded dispersion forces in colloidal particles-Exact integration of the Casimir and Polder equation, J. Colloid
    
    Interface Sci., (1971), 37(2), 382-389
    [54] 刑其毅,徐瑞秋,周政,基础有机化学,第二版,北京,高等教育出版社,(1988),801
    [55] Enright, B., Fitzmaurice, D., initial studies of carrier mobility in a nanocrystalline semiconductor film, Proceedings of the Symposium on Nanostructured Materials in Electrochemistry, 21-26 May 1995, Searson, P.C., USA, Meyer, G.J.Reno, NV, (1995), 49-60
    [56] Irina Shiyanovskaya& Maria Hepel, Bicomponent WO_3/TiO_2 films as photoelectrodes, Journal of the Electrochemical Society, (1999), 146(1), 243-249
    [57] Irina Shiyanovskaya& Maria Hepel, Decrease of recombination losses in bicomponent WO_3/TiO_2 films photosensitized with Cresyl Violet and Thionine, J.Electrochem. Soc., (1998), 145(11), 3981-3985.
    [58] 刘明志,袁坚,程金树,溶胶-凝胶法制备WO_3电色薄膜,硅酸盐通报,(2000),2,32-34。
    [59] 徐键,王民权,张勇,陆杭,Sol-Gel法制备WO_3薄膜的研究,硅酸盐通报,(1998),5,61-63。
    [60] 成英之,张渊明,唐渝,WO_3-TiO_2薄膜复合光催化剂的制备和性能,催化学报,(2001),22(2),203-205
    [61] L. Meda, R.C.Breitkopf, T.E.Haas, R.U.Kirss, Investigation of electrochromic properties of nanocrystalline tungsten oxide thin film, Thin Solid Films (2002), 402,126-130.
    [62] Irina Shiyanovskaya& Maria Hepel, Decrease of recombination losses in bicomponent WO_3/TiO_2 films photosensitized with Cresyl Violet and Thionine, J.Electrochem. Soc., (1998), 145(11) , 3981-3985
    [63] 吴正元,陈涛,WO_3基H_2S气体传感器的研究,华中理工大学学报,(1999),27(1),41-43
    [64] G. A. Niklasson, J.Klasson, E.Olsson, Ploaron absorption in tungsten oxide nanoparticle aggregates, Electrochemical Acta ,(2001), 46, 1967-1971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700