用户名: 密码: 验证码:
砷的原子荧光光谱法改进及其在胶州湾、黄、东海的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在实验室现有的条件下,对原有的天然水中总溶解态无机砷(As(Ⅲ+Ⅴ))、As(Ⅲ)、的原子荧光光谱法进行了改进,并将该方法应用到胶州湾、黄、东海海区,初步探讨了As(Ⅲ+Ⅴ)及As(Ⅲ)在这些海区的生物地球化学行为。
     结合仪器现状及实验室现有条件,对辅助灯电流进行改善后,原子荧光光谱法测定As(Ⅴ)的检出限为0.11nM。对As(Ⅴ)含量为11.35nM、1.60nM和22.96nM的样品分析精密度为1.4%、6.8%和0.4%,回收率在98.0~104.0%范围内,线性范围为0.11~267.0nM。测定As(Ⅲ)时,改用氢气发生器作为氢气源,提高了测定的灵敏度。对As(Ⅲ)含量为6.67nM、1.33nM和13.35nM的样品分析精密度分别为1.1%、3.1%和0.7%,回收率在99.3~105.6%范围内变动,线性范围为0.02~66.7nM,检出限为0.02nM。与原来的方法相比检出限降低了10倍。以上条件的控制为测定并研究海水中低浓度的砷打下了良好的实验基础。
     通过2001年8月~10月三个航次对胶州湾的调查表明,胶州湾水体中总溶解态无机砷As(Ⅲ+Ⅴ)及溶解态As(Ⅲ)的浓度分别为7.71~25.31nM和0.77~12.59nM。平均含量为16.51nM和2.70nM。As(Ⅲ)与As(Ⅲ+Ⅴ)的比值平均值变化范围在0.11~0.26之间。水体中溶解态无机砷的浓度受陆源输入影响比较显著。特别是像大沽河、洋河这样径流量较大的河口,对附近海区的影响更为明显。从我们调查的数据分析,胶州湾中As(Ⅲ)含量的控制因素不仅仅是生物的转化作用,另外还有其它因素如沉积物中有机质的还原经搅动面扩散到水中等,都可能导致As(Ⅲ)的浓度增加。在2001~2002年度内,夏季胶州湾周边河流中的砷浓度普遍高于春季,以墨水河为代表的排污河水中As(Ⅲ)的含量明显偏高,其原因是由河流底质的还原环境所致。
     对“东黄海973”项目2000年秋季、2001年春季以及2002年秋季的调查结果的分析给出了各航次的浓度范围及平均值,并且指出,As(Ⅲ+Ⅴ)及As(Ⅲ)的浓度变化受季节变化有一定影响,表现为春季航次高于秋季航次,平均浓度高2nM左右。特别是As(Ⅲ)占As(Ⅲ+Ⅴ)的比例春季明显偏高,约是秋季的10
    
    砷的原子荧光光谱法改进及其在胶州湾、黄、东海的应用
    倍左右。As(m十V)与叶绿素a的变化趋势有一定的联系,砷的存在形态与浮
    游生物及细菌等微生物的活动有关,这表现了砷作为营养型元素的生物地球化学
    特征。As(111+V)及As(III)在东黄海海域的分布受海流及陆地径流的影响比较
    大,主要受黑潮暖流、台湾暖流、黄海沿岸流、东海沿岸流、长江冲淡水等因素
    影响,As(m+V)表现为近岸海区高于外海、底层高于表层的变化趋势,这一
    点在春季表现得尤为明显。对PN断面上黑潮水与东海陆架水的交换通量初步估
    计结果显示,As(I11+V)在PN断面上的净输入量为0.SOmol/s,年输入量为
    l.6xlo,mol/yr。2002年9月航次调查海区范围内As护值为1.4一xlo一2,高于挪威
    近海(2 .08砚.54xl0一3),而低于西大西洋(0 .25士0.04)的值。这种As/P值的差
    异与生物因素比如浮游植物种类及数量的差异有关。长江下游的南通站调查结果
    显示,其总溶解态无机砷的浓度高于长江口附近海区,且近年来浓度没有下降的
    趋势,主要受季节变化较大的径流量的控制,AS(I11+V)平均年通量约为
    一66xlosmol/”。
     对2002年8月及11月两个航次的大面站调查,结果显示在长江口附近海域
    总溶解态无机砷、盐度以及悬浮颗粒物的浓度变化具有比较明显的季节性,表现
    为秋季高于夏季。主要受陆地径流流量的影响,夏季浓度较低平均15.82nM,秋
    季平均浓度升至22.15nM,比夏季升高40%左右,且As(m十V)与盐度、SPM
    含量之间体现出较明显的相关关系,与陆源物质输入特征具有较好的一致性。另
    外,两个季节内,As(m+V)与磷酸盐的正相关关系在表层体现得较底层显著,
    秋季较夏季显著。通过对赤潮爆发前后As(m十V)浓度的对比,可见赤潮爆发
    过程中浮游生物对砷的吸收作用较为显著。
The modified methods for the determination of total dissolved inorganic arsenic (As(III+V)) and As(III) by hydride generation-atomic fluorescence spectrometry (HG-AFS) are presented in this dissertation. And study the biogeochemical behavior of dissolved arsenic in Jiaozhou Bay, Yellow Sea and East China Sea, which will give some contributions to the knowledge of oceanal biogeochemical cycle of arsenic.
    Under the condition of our experiments, the detection limit (LOD) of arsenate is 0.11nM, with the relative standard deviation ( R. S.D.) of 1.4%, 6.8% and 0.4% for the arsenate levels of 11.35nM, 1.60nM and 22.96nM, respectively. The recovery of the method is 98.0-104.0%. The liner limit is between 0.11nM and 267.0nM. We use hydrogen generator to supply H2 for determination of As (III) .The detection limit of arsenite is 0.02nM, which is ten times lower than before. R. S. D. of the method are 1.1%, 13.1% and 0.7% for As (III) levels of 6.67nM, 1.33nM and 13.35nM, respectively. The recovery of the determination for As (III) is 99.3-105.6%%. The liner limit is between 0.02nM and 66.7nM.
    Band on the result of the Jiaozhou Bay (2001.8-2001.10), concentrations of As (III+V ) and As(III) are ranged from 7.71nM to 25.31nM and from0.77 to 12.59nM, with the average of 16.51nM and 2.70nM, respectively. The distribution of As (III+ V ) and As(III) is significant influenced by the terrestrial input, especially from the large runoff of Daguhe and Yanghe. The concentration of As(III) is not only transformed by biologic activity, but related to the reduction by microorganisms and organic matters diffused from sediments through the stirring of seawater. In the year of 2001-2002, the concentrations of arsenic in the rivers around Jiaozhou Bay is higher in summer than those in spring. The concentration of As(III) in the sewage rivers such as Moshui- he is significantly high, which may relate to the anoxic
    
    
    environment of sediments.
    In October 2000, May 2001 and September 2002, three cruises were performed in Yellow Sea and East China Sea. Concentrations of As (III+V ) and As(III) for each cruise are given in the thesis. The concentrations of As (III+V ) and As(III) are seasonally fluctuated, which shows about 2nM higher in spring than that in autumn. And the ratio of As(III) to As (III+V ) is even higher in spring , it is nearly ten times higher than autumn. The concentration of As (III+ V ) some relationships with chlorophyll a. And the different species of arsenic may be produced by phytoplankton and bacteria, and this is why As is seen as a member of the nutrient-type elements in sea water. The distributions of As (III+V ) and As(III) are influenced by currents and runoffs in the Yellow Sea and East China Sea, especially by Kuroshio Current, Taiwan Current, Yellow Sea Coastal Current, East China Sea Coastal Current and the Changjiang runoff etc. Especially in spring, concentrations of As (III+V) in the coastal water are larger than open seawater, and the concentrations of surface water are larger than that of bottom, since the runoff of terrestrial input. According to our calculation, the net import flux of As(III+ V) in the PN section is estimated to be 0.50mol/s , and the annual import flux is 1.6 l07mol/yr. In September 2002, the ratio of As to P is 1.41 10-2, which is higher than Norway offshore (2.08-2.54 10-3), and lower than North Atlantic Ocean (0.25 0.04). The difference in the As to P ratios could be induced by different biological factors, such as plankton species and amounts differences. The seasonal variation in the lower reaches of Changjiang (Nantong) shows that the concentration of As(III+ V) is mainly controlled by season and river discharge. The concentration of As(III+V) is not decreased in recent years, and the annual flux is estimated about 1.66 l08mol/yr .
    In order to understand the relationships between harmful algal blooms and arsenic, two cruises were performed in the coastal areas near the estuary of Changjiang in August and November 2002, The concentration of As(III+V), salinity and SPM in a
引文
1. Abdullah, M. I., Zhou, Shiyu. , Mosgren, K. Arsenic and selenium species in the oxic and anoxic waters of the Oslofjord, Norway. Marine Pollution Bulletin. 1995, 31:116-126.
    2. Aggett, J. and Aspell, A. C. The determination of As(III) and total arsenic by atomic-absorption spectroscopy. The Analyst, 1976, 101:341-347.
    3. Allard B. Groundwater. In: Salbu B, Steinnes E, editors. Trace elements in natural waters. Boca Raton: CRC Press, 1995:151-176.
    4. Anderson, L. C. D., Bruland, K. W. Biogeochemistry of arsenic in natural water: The importance of methylated species. The Environmental Science and Technologe. , 1991, 25:420-427.
    5. Anderson, R. K. et al. Seletive reduction of arsenic species by continuous hydride generation Part I: Reaction media. Analyst, 111:1143-1152.
    6. Andreae, M. O. Arsenic speciation in seawater and industrial water:the influence of biological-chemical interactions on the chemistry of a trace element. Limnol. Oceanogr. , 1979, 24:440-452.
    7. Andreae, M. O., Andreae, T. W. Dissolved arsenic species in the Shelde estuary and watershed, Belgium. Estuarine Costal and Shelf Science, 1989, 29:421-433.
    8. Andreae, M. O., Byrd, J. T., Froelich, P. N. Arsenic, antimony, germanium, and tin in the Tejo Estuary, Portugal: modeling a polluted estuary. The Environmental Science and Technologe. 1983,17:731-737.
    9. Andreae, M. O. , Froelich, P. V. Arsenic, antimony and germanium biogeochemistry in the Baltic Sea. Tellus. , 1984, 36B:101-107.
    10. Andreae, M. O., Klumpp, D. Biosynthesis and release of organo-arsenic compounds by marine algae. Environmental Science and Technology, 1979, 13:738-741.
    11. Batley, G E. Heavy metals and tributyltin in Australian coastal and estuarine waters. State of the marine environment report for Australia.
    
    Canberra:Department of the Environment, Sports and Territories, 1996. 63-72.
    12. Benson, A. A., Phytoplankton solved the arsenate-phosphate problem. In: Holm-Hansen, O., Bolis, L., Gilles, R. (Eds.), Marine Phytoplankton and Productivity. Springer, Berlin, 1984, pp56-59.
    13. Broeck, W. C. , Peng,T.H. Tracers in the sea. Lamont, Koherty Geological Observatory Publication. Coumbia University, New York, 1982.
    14. Brown, A. A. , Dymatt, T. C. Novel application of acontinuous flow CV and Hydride generation system. XXIV CSI, Garmisch-Partenkirchen, 1985, Sept. 15-20, Paper TH K 217,3: 568-569.
    15. Burner U. Mineral resources database. Bundesanstalt furgeowissenschaften und rohstoffe, Hannnover, Germany (in Reimann and Caritat 1998) , 1997.
    16. Cai.Y. , Georgiadis, M. , Fourqurean, J. W. Determination of arsenic in seagrass using inductively coupled plasma mass spectrometry. Spectrochimica Acta PartB, 2000,55: 1411-1422.
    17. Carbon, J. Y., Carbon, N. Determination of arsenic species in seawater by flow in jection hydride generation in situ collection followed by graphite furnace atomic absorption spectrometry stability of As(III). Analytica Chimica Acta. 2000, 418:19-31.
    18. Carpenter, R., Peterson, M. L., Jahnke, R. A. In estuarine interactions, Wiley,M. L., eds., Academic Press: New York, 1978, pp459-480.
    19. Cheam, V. and Agemian, H. Preservation of inorganic arsenic species at microgram levels in water samples. Analyst, 1980, 105:737-743.
    20. Chester, R. Marine geochemistry. London:Chapman&Hall, 1993:698
    21. Chilvers D. C., Peterson P. J. Global cycling of arsenic. In: Hutchinson TC, Meema KM, editors. Lead, mercury, cadmium and arsenic in the environment. SCOPE 1987,31:279-301.
    22. Crecelius, E. A. , Bloom, N. S. , Cowan, C. E. , Jenne, E. A. Speciation of selenium and arsenic in natural waters and sediments:Arsenic speciation. Electic Power Research Institute, 1986, Vol2, ES-4641, Project , 2020-2.
    
    
    23. Crecelius, E. A. Bothner, M. H. and Carpenter, R. Geochemistries of arsenic, antimony and related elements in sediments of Puget Sound. Environ. Sci. Technol., 1975, 9:325-333.
    24. Cooke, T. D. and Bruland, K. W. Aquatic chemistry of selenium:Evidence of Biomethylation. Environ Sci. Technol. , 1987, 21:2114-2119.
    25. Cullen, W. R. and Reimer, K. J. Arsenic speciation in the environment. Chem. Rev. 1989,89:713-764.
    26. Cutter, G. A. Metalloids in wet deposition on Bermuda: concentrations, sources, and fluxes. J. Geophys. Res. 1993,98:16777-16786.
    27. Cutter, G. A., Cutter, L. S. Behavior of dissolved antimony, arsenic and selenium in the Atlantic Ocean. Mar. Chem. , 1995,49:295-306.
    28. Cutter, G. A. Cutter, L. S. Metalloids in the high latitude North Atlantic Ocean: Sources and internal cycling. Marine Chemistry., 1998, 61:25-36.
    29. Cutter, G. A., Cutter L. S. , Featherstone A. M. , Lohrenz S. E. Antimony and arsenic biogeochemistru in the western Atlantic Ocean. Deep-Sea Research II, 2001,48: 2895-2915.
    30. Cutter, L.S., Cutter G. A. , San Diego-MMcGlone, M. C. Simultaneous determination of inorganic As and Sb species in natual waters using selective HG with GC/PID. Analytical Chemistry. 1991,63:1138-1142.
    31. Damkroger, G. .Grote, M., Janben, E. Comparison of sample digestion procedures for the determination of arsenic in certified marine samples using the FI-HG-AAS-technique. 1997: 357:817-821.
    32. Driehaus W. Arsenentfernung mit Mangandioxid und Eisenhydroxid in der Trinkwasseraufbereitung. VDI-Fortschrittberichte, Reihe Umwelttechnik 1994:15:133, 117.
    33. Davis, A. , Curnou, P. DE, Edmond Eary L. Discriminating between sources of arsenic in sediments of a tidal waterway, Tacoma, Washington. The Environmental Science and Technologe. 1997,31:1985-1991.
    34. Dedina, J. and Tsalev, D. L. Hydride General Atomic Absorption Spectrometry.
    
    John Wiley&Sons, Chichester, 1995,526pp.
    35. Elrick, K. A., Horowitz, A.J. Analysis of rocks and sendiments for As, Sb, and Se, by wet digestion and HG AA. Warian Instruments at Work, 1986, No. AA-56, 1-5.
    36. Fabris, G. J. , Monahan, C. A . Characterization of toxicants in waters from Port Phillip Bay: metals. Commonwealth Scientific and Industrial Research Organization INRE Port Philip Bay Environmental Study. Melbourne, 1995, 48.
    37. Ferm, V. H. et al. Arch. Envion. Health, 1971,22:560-577.
    38. Fernandez, F. J. Atomic absorption determination of gaseous hydride utilizing anborohydride reduction. At. Absorpt. Newsl., 1973, 12:93-97.
    39. Flanjak, J. Atomic absorption spectrometry determination of As and Se in offal and fish by hydride generation. J. Asoc. Off. Analitical Chemistry. 1978, 61:1299-1303.
    40. Furser. A. Arsenic. Industrial, Biomediacal, Environmental, Perspectives. (Lederer&Fensterheim, eds). Van Nostrand Reinhold, New York, 1983,3-9.
    41. Gomez, M., Camara, C. Palacios, C. Lopez-Gonzalvez, A. Anionic cartridge preconcentrators for inorganic arsenic, monomethylarsonate and dimethy-larsinate determination by online HPLC-Hg-AAS. Fresenius Journal of Analytical Chemistry. 1997, 357(7) :844-849.
    42. Gomez-Arza, J. L., Sanchez-Rodas, D., Giraldez, I., Morales, E. A comparison between ICP-MS and AFS detection for arsenic speciation in environmental samples. Talanta, 2000,51:257-268.
    43. Han, H. B. , Liu, Y. B., Mou, S. F., Ni, Z. M. Speciation of arsenic by lon chromatography and off-line hydride generation electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry. 1993,8: 1085-1090.
    44. Hassett, D.J., Hassett, D. F. An inexpensive, reproducible hydride generation for atomic spectroscopy. At. Spectrosc. , 1986,7:127-128.
    45. Heinrichs H. , Hundestrgge T. , Brumsack H. J. Siedlungsabfalle: Verwertung,
    
    Verbrennung, Deponierung. In:Matschullat J. , Tobschall H. J., editors. Geochemie und Umwelt. Relevante Prozesse in Atomo-, Pedo-, und Hydrosphare. Berlin: Springer, 1997:189-202.
    46. Howard, A. G. , Salou, C. Cysteine enhancement of the cryogenic trap hydride AAS determination of dissolved arsenic species. 1996, 333(1-2) : 89-96.
    47. Huang, W. W., Martin, J. M. , Seyler, P., Zhang, J. and Zhong, X. M. Distribution and behaviour of arsenic in the Huanghe (Yellow River) estuary and Bohai Sea. Marin Chemistry.,1988, 25:75-91.
    48. Kitts, H. J. et al. Arsenic biogeochemistry in the Humber estuary, U.K. Estuarine, Coastal and Shelf Science,1994, 39:157-172.
    49. Klumpp, D. W., Peterson, P. J. Arsenic and other trace elements in the waters and organisms of an estuary in SW England. Environmental Pollution. 1979, 19:11-20.
    50. Krynitsky, A. J. Preparation of Biological Tissue for Detemination of Arsenic and Selenium by Graphit Furance Atomic Absorption Spectrometry. Anal.Chem., 1987, 59(14) :1884.
    51. Latva, S., Hurtta, M. et al. Separation of arsenic species in aqueous solutions and optimization of determination by graphite furnace atomic absorption spectrometry. Analytica Chimica Acta. 2000,418:11-17.
    52. Libes, S. M. An introduction to Marine Biogeochemistry. John Wiley & Sons, Inc., New York,1992, p170.
    53. Lin K, Chen ZS, Guo BH & Tang YX Seasonal transport and exchange between the Kuroshio water and shelf water. In: Hu DX and Tsunogai S (Ed) Margin Flux in the East China Sea,. Beijing :China Ocean Press,. 1999, 21-34.
    54. Matschullat, J. Arsenic in the geosphere-a review. The Science of The Total Invironment, 2000, 249:297-312.
    55. Measures, C. J. , Burton, J. D. The vertical distribution and oxidation states of selenium in the northeast Atlantic Ocean and their relationship to biological process. Earth Planet. Sci.Lett., 1980, 49:385-396.
    
    
    56. Middelburg, J. J. . Hoede,D. , Van der Sloot.H. A. et al. Arsenic, antimony and vanadium in the North Atlantic Ocean. Geochimica et Cosmochimica Acta, 1988,52:2871-2878.
    57. Millward, G. E. , Kitts, H. J. et al. Arsenic in the Thames plume, U. K. Mar. Environ. Res. , 1997, 44(1) :51-67.
    58. Minami, H. , Kato Y. Remobilization of arsenic in sub-oxic sediments from the seafloor of the continental margin. Journal of Oceanography. 1997, 55:553-562.
    59. Moldovan, M. , Gomez, M. M. , Palacios, M. A. , Camara, C. Arsenic speciation in water and human urine by HPLC-ICP-MS and HPLC-MO-HG-AAS. Microchemical Journal. 1998, 59:89-99.
    60. Morrda-Pineiro, J. et al. Direct determination of arsenic in sea-water by continuous-flow hydride generation atomic fluorescence spectrometry. J. Anal. Atomic Spectrometry,1997, 12:1377-1380.
    61. Munksgaard, N. C., Parry, D. L. Trace metals, arsenic and lead isotopes in dissolved and particulate phases of North Australian coastal and estrarine seawater. Marine Chemistry. 2001,75:165-184.
    62. Munoz, O., Velez, D. , Montoro R . Optimization of the solubilization, extraction and determination of inorganic arsenic [As(III)+As(V)] in seafood products by acid digestion, solvent extraction and hydride generation atomic absorption spectrometry. Analyst., 1999, 124: 601-607.
    63. Nakashima, S. Selective determination of As(III) and As(V) by atomic-absorption spectrometry following arsine generation. The Analyst. 1979, 104: 172-173.
    64. National Research Council. Arsenic. National Academy of Sciences, Washington, DC. 1977, 16.
    65. Nriagu, J. O. , Pacyna J. M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 1988, 333: 134-139.
    66. Nriagu, J. O. A global assessment of natural sources of trace elements. Nature. , 1989, 338: 47-49.
    
    
    67. Nriagu, J.O. Heavy metal pollution poisoning the biosphere? Environment, 1990, 32 (7-11) :28-33.
    68. Owens, J. W. et al. Modification of trace element concentrations in natural waters by various field sampling techniques. Anal. Lett., Part A, 13:253.
    69. Penrose, W.R. et al. , Arsenic the marine and aquatic environments:analysis, occurrence and significance, Crit Rev. Environ. Control, 1974,465
    70. Peterson, M. L., Carpenter, R. Biogeochemical processes affecting total arsenic and arsenic species distributions in an intermittently anoxic Fjord. Marine Chemistry. 1983,12: 295-321.
    71. Peterson, M. L., Carpenter, R. Arsenic distribution in pore waters and sediments of Puget Sound, Lake Washington, the Washington coast and Saanich Inlet, B. C. Geochim. Cosmochim.Acta 1986, 50:353-369.
    72. Phillips, D. J. H. and Depledge, M. H. Mar. Environ. Res., 1985,17:1-12.
    73. Raab, A., Hansen, H. R. , Zhuang, Liuying., Feldmann, J. Arsenic accumulation and speciation analysis in wool from sheep exposed to arsenosugars. Talanta., 2002, 58: 67-76.
    74. Rajanande, S., Thomas, W., V. and Robert, L. Comparison of reflux and microwave oven digestion for the determination of arsenic and selenium in sludge reference material using flow injection hydride generation and atomic absorption spectrometry. Analyst,1995, 120: 95-99.
    75. Riansares. Analytical techniques applied to the speciation of selenium in environmental matrices. Anal., Chem., Acta., 1994, 286:357-370
    76. Richards, F. A. Anoxic basins and fjords. In Chemical Oceanography. Riley, J. P., Skirrow, G. eds. Academic Prddss, NY. 1965,1:611-645.
    77. Robbereht, H. and Van Griekert, R. Seleniun in environmental waters: Determination, Speciation and Concentration levels, Talanta, 1982,29:823-844
    78. Sanders, J.G. Arsenic geochemistry in Chespeake Bay:Dependence upon anthropogenic inputs and phytoplankton species composition. Marine Chemistry., 1985, 17:32
    
    
    79. Sanders, J. G. , Riedel, G. F. , Osman, R. W. , Arsenic cycling and its impact in estuarine and coastal marine ecosystems. In: Nriagu, J. 0. (Ed. ), Arsenic in the Environment, Part I :Cycling and Characterization. Wiley, New York, 1994, pp. 289-308.
    80. Sanders, J. G. , Windom, H. L. The Uptake and reduction of arsenic species by marine algae. Estuarine Coastal and Marine Science, 1980, 10:555-567
    81. Seyler, P., Martin, J. M. Distribution of arsenic and total dissolved arsenic in major French estuaries: dependence on biogeochemical processes and anthropogenic inputs. Mar. Chem. , 1990, 29:277-294.
    82. Seyler, P., Martin, J. M. Arsenic and selenium in apristine river-estuarine system: the Krka (Yugoslavia). Marine Chemistry. , 1991,34:137-151.
    83. Schramel, P., Xu, L. Q. Determination of As, Sb, Bi.Se and Sn in biological and environmental samples by continuous flow HG ICP-AES without GLS. Fresenius . Anal. Chem. , 1991, 340: 41-47.
    84. Smith, J. D. , Butler, E. C. V. Chemical properties of a low-oxygen water column in Port Hacking (Australia) : arsenic, iodine and nutrients. Marine Chemistry. 1990,28:353-364.
    85. Spacie, A., Hamelink, J. L. Bioaccumulation. In:Rand, G. M. , Pettrocelli.S. R. (eds. Fundamentals of aquatic toxicology. Hemisphere Pubishers , Washington, DC. , 1985, 495-525
    86. Statham, P. J. , Burton, J. D. and Maher, W. A. Dissolved arsenic in watersof the Cape Basin. Deep-Sea Research. 1987,34:1353-1359.
    87. Sturgeon, R. E. , Willie, S. N. and Berman, S. S. HG-GFAAS: new prospects. Fresenius Z. Anal. Chem. , 1986, 323:788-792.
    88. Taboada-de la Calzada, A., Villa-Lojo, M. C. , Beceiro-Gonzalez, E. et. al. Determination of arsenic species in environmental samples: use of the alga Chlorella vulgaris for arsenic (III) retention. Trends in analytical chemistry. , 1998, 17 (3) : 167-175.
    89. Taken, R. L. , Lewis, R. J. eds. Registry of toxic effects of chemical substances.
    
    Us. Dept of Health and Human Services Cincinnati, Ohio, 1983
    90. Thein J., Veerhoff M. , Klinger C. Geochemische barrieren bei versatzbergwerken im fels. In:Matschullat J. , Tobschall H. J. ,editors. Geochemie und Umwelt. Relevante Prozesse in Atomo-, Pedo-, und Hydrosphare. Berlin: Springer, 1997:113-122.
    91. Van der Sloot, H. A., Hoede, D. and wi jkstra, J. Trace oxyanions and their behavior in the river Porong and Solo, the Java Sea and the adjacent Indian Ocean, NetherlandsJ. Sea Res., 1989,23:379-386.
    92. Viereck-Gotte L, Herget J. Zur Geochemie der Boden industriell gepragter urbaner Gebiete. In:Matschullat J., Tobschall H. J., editors. Geochemie und Umwelt. Relevante Prozesse in Atomo-, Pedo-, und Hydrosphare. Berlin: Springer, 1997:127-150.
    93. Wang, C. F. , Chang, C. Y. , Chin, C. J. Determination of arsenic and vanadium in airborne related reference materials by inductively coupled plasma-mass spectrometry. Analytica Chimica Acta. 1999, 392:299-306.
    94. Waslenchuk, D. G. The budget and geochemistry of arsenic in a continental shelf environment, Marine Chemistry. 1978, (7) :39-52.
    95. Waslenchuk, D. G. Windom, H. L. Factors controlling the estuarine chemistry of arsenic. Estuar. Coastal Mar. Sci. 1978, 7:455-464.
    96. WHO, Environmental Health Criteria, Vol. 18, Arsenic. World Heath Organization, Geneva, 1981
    97. Windom, H.L. et al. Trace metal-nutrient relations in estuaries. Marine Chemistry., 1991, 32: 177-194.
    98. Woolson, E. A. In Topics in Environmental Health:Biological and Environmental Effects of Arsenic. Fowler, B. A., ed, ;Elsevier:Amsterdam, 1983,6:51
    99. Yamamoto, M., Fujishige, K., Tsubota, H. and Yamamoto, Y. Characterization of As in sea water by HGAAS. Anal. Sci., 1985,1:47-50.
    100. Zhang, J. Geochemistry of arsenic in the Huanghe(Yellow River) and its delta region-A review of available data. Aquatic Geochemistry., 1996,1:241-275
    
    
    101. Zoorob, G. K., Mckiernan, J. W. Caruso, J. A. ICP-MS for elemental speciation studies. Mikrochim. Acta. 1998,128(3-4):145-168.
    102.B.威尔茨著,李家熙,陈耀慧等译,原子吸收光谱法.北京:地质出版社,1985.
    103.程介克,刘锦春,江祖成编著.痕量分析.化学工业出版社.北京.1993,148-166.
    104.郝恩良,鄂学礼,柳丕尧.海水中微量砷的比色测定,海洋湖沼通报,1981,3:14-22.
    105.胶州湾及其近岸地区环境概况.海洋通报,1992,11(3):6-15.
    106.李静,张敏秀等.胶州湾表层海水中砷的存在形态。海洋环境地球化学Ⅲ.1981,11(3):32-37.
    107.李瑞香,朱明远,陈尚,吕瑞华,李宝华.围隔生态系内浮游植物对富磷的响应.生态学报,2001,21(4):603-607.
    108.李善为.从海湾沉积物特征看胶州湾的形成演变.海洋学报,1983,5(3):328-339.
    109.廖自基编著.微量元素的环境化学及生物效应.北京:中国环境出版社,1992
    110.刘素美,张经,陈洪涛.黄海和东海生源要素的化学海洋学.海洋环境科学.2000,19(1):68-74.
    111.刘镇宗,科学月刊,1995,26(2):134-140
    112.潘用树,洪华生,庄峙厦.氢化物-原子吸收法测定海水中砷的有机和无机化学形态.厦门大学学报(自然科学版)1993,32:471-474.
    113.乔彭年,周志德,张虎男著.中国河口演变概论,北京:科学出版社,1994,pp28.
    114.任景玲,刘素美,张经等.陆源物质输送对赤潮高发区的影响——以Al为例.应用生态学报(待刊).
    115.王华东,郝春曦,王建编著。环境中的砷—行为、影响、控制。北京:中国环境科学出版社,1992
    116.王俊、张义生主编.化学污染物与生态效应.中国环境科学出版社,北京,1993.206-220
    117.肖虹滨、赵夕旦,史致丽.胶州湾中砷(Ⅴ)还原初步研究.青岛海洋大学学报,1995,25(3):338-342.
    118.肖虹滨,赵夕旦,史致丽.胶州湾东部水体、浮游植物和沉积物中的砷.青岛海洋大学学报,1996,26(3):340-346.
    119.辛宝恒编著,黄海渤海大风概论,北京:气象出版社,1991.
    
    
    120.熊辉.As的原子荧光光谱法测定及其生物地球化学行为的研究.青岛:青岛海洋大学.1999.
    121.徐韧.长江口及其邻近海域赤潮发生的特点及管理对策初探.海洋开发与管理.1994,11(4):36-38.
    122.徐韧,洪君超,王桂兰,沈竑.长江口及其邻近海域的赤潮现象.海洋通报,13(5):25-29.
    123.薛光.砷的测定方法的新进展,冶金分析,1997,17(6):32-35
    124.姚金玉,彭兰乔.氢化物发生石墨炉原子吸收进展.理化检验-化学分册,1996,2(32):118-120.
    125.中国海湾志编委会.中国海湾志(第四分册,山东半岛南部和江苏省海湾).北京:海洋出版社,1993,157-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700