用户名: 密码: 验证码:
过渡金属钯、镍和锌双催化的两种羰基化合物反应机理的密度泛函研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作应用量子化学密度泛函B3LYP方法,分别对钯催化炔丙基醋酸盐分子内重排反应,镍和锌双过渡金属催化丁间醇醛环化反应的机理进行了研究,找到了各反应中主要的过渡态,详细的讨论了这些反应的机理。
     1.钯催化炔丙基醋酸盐分子内重排的理论研究
     用密度泛函(DFT)方法对钯催化炔丙基醋酸盐分子内重排进行了理论研究。结果表明,在反应中钯遵循18电子规则。优势反应通道经历如下几个步骤:催化剂与炔基键配位提高其活性,羰基氧与炔基之间的S_N2反应,醋酸根的重排形成五元环阳离子,通过利用环内4π电子的环化作用的反应路径达到目标产物。催化剂催化作用的本质在于钯与端炔基配位,降低反键轨道π_((C1-C2))~*与羰基氧2p-LP轨道的能级差。
     2.镍、锌双过渡金属催化环化丁间醇醛反应的机理研究
     用密度泛函(DFT)的方法研究了双过渡金属镍、锌催化丁间醇醛发生分子内的环化反应机理。结果表明,该反应是放热的,主要经过了催化剂的配位,质子氢的转移,分子内的成环的几个步骤。分子内成环是整个反应的速率控制步骤。通过计算还发现,在催化过程中,双金属中的镍可以作为活性催化剂催化整个反应,而且以镍为活性催化剂催化时,和以锌作为活性催化剂相比能降低速控步骤的能垒,使反应更容易发生。理论预测的产物是和实验相一致的。
In present paper,the density functional method(B3LYP) is employed to study the reaction mechanism of Palladium(Ⅱ)-catalyzed rearrangements of propargyl acetates,and Ni and Zn-catalyzed intermolecular cyclization of aldol.The main transition states of these reactions are found out.The mechanisms of these asymmetric cyclized reactions are discussed in detail.
     1.Theoretical study on Palladium(Ⅱ)-catalyzed intermolecular rearrangements of propargyl acetates
     The mechanisms of Palladium(Ⅱ)-catalyzed rearrangements of propargyl acetates are investigated using density functional theory with B3LYP methods.It reveal that the coordination of the triple bond of 1 to PdCl_2(MeCN)_2 enhances the electrophilicity of alkyne,and the sunsequent nucleophilic attack of the carbonyl oxygen to the electron-deficient alkyne form ate complex IM2,whick would occurs rearrangements of acetic acid radical,the object production is produced by the reaction path of 4π-electrocyclization.It is suggested that the terminal alkynal is activated by the decrease in theπ~*_((C1-C2)) orbital energy.Throughout the reaction,all Pd~(11) complexes obey the 18-electron-rule.
     2.DFT study on the mechanism of Ni and Zn-Catalyzed Aldol cyclization reation
     The reaction mechanism of the Ni and Zn-catalyzed intermolecular cyclization of aldol,was studied using density functional theory(DFT) calculations at the B3LYP level.The calculations indicate that the intermolecular cyclization is the rate-determining step,and that the coordination of catalyzer and the transfer of proton are favorable.Ni as the active catalyst can decrease the energy barrier than Zn.All of the theoretical results are consistent with the experiment.
引文
[1]Felkin,I.E.;Sarda.P.The clemmensen reduction of enol ethers:cyclopropyl ethers from mono- and di-methoxycyclohexa-1,4-dienes.Tetrahedron Lett.1983,24,4425-4428.
    [2]Talapatra,S.K;Chakrabati.S,Mallik.A.K;Talapatra.B.Some newer aspects of Clemmensen reduction of aromatic ketones.Tetrahedron.1990,46,6047-6052.
    [3]Szmant,H.H;The Mechanism of the Wolff-Kishner Reduction,Elimination,and Isomerization Reactions.Angew.Chem.Int.Ed.Engl.1968,7,120-128.
    [4]Taber D.F.;Stachel S.J.On the mechanism of the Wolff-Kishner reduction.Tetrahedron Lett.1992,33,903-906.
    [5]Alcaide B.;Almendros P.The Direct Catalytic Asymmetric Aldol Reaction Eur.J.Org.Chem.2002,1595.
    [6]Wei H.-X.;Hu J.;Purkiss D.W.;Pare P.W.Stereoselective aldol coupling of α,β-acetylenic ketones promoted by MgI_2 Tetrahedron Lett.2003,44,949-952.
    [7]Johnson J.S.;Evans D.A.Chiral Bis(oxazoline) Copper(Ⅱ) Complexes:Versatile Catalysts for Enantioselective Cycloaddition,Aldol,Michael,and Carbonyl Erie Reactions.Acc.Chem.Res.2000,33,325.
    [8]Denmark S.E.;Stavenger R.A.Asymmetric Catalysis of Aldol Reactions with Chiral Lewis Bases.Ace.Chem.Res.2000,33,432.
    [9]Alcaide B.;Almendros P.The direct catalytic asymmetric aldol reaction.Eur.J.Org.Chem.2002,1595.
    [10]Wagner H.;Maurer I.;Farkas L.;Strelisky J.Synthese von polyhydroxy-flavonolmethyl(a|¨)thern mit potentieller cytotoxischer wirksamkeit—Ⅱ:Synthese von6-hydroxy-und 8-hydroxy-k(a|¨)mpferoldimethyl(a|¨)thern zum strukturbeweis neuer flavonole aus betula-,alnus-,parthenium-und larrea-arten.Tetrahedron,1977,33,1405-1409.
    [11]Kirsch S;Binder F;T;Bert C.L.;M.Helge.Gold(Ⅲ)- and Platinum(Ⅱ)-Catalyzed Domino Reaction Consisting of Heterocyclization and 1,2-Migration:Efficient Synthesis of Highly Substituted 3(2H)-Furanones.Angew.Chem.Int.Ed.2006,45,5878.
    [12]Xiao Y;Zhang J.Tetrasubstituted Furans by a PdⅡ-Catalyzed Three-Component Michael Addition/Cyclization/Cross-Coupling Reaction.Angew.Chem.Int.Ed.2008,47,1903.
    [13]Pohlhaus P.D.;Johnson J.S.Highly Diastereoselective Synthesis of Tetrahydrofurans via Lewis Acid Catalyzed Cyclopropane/Aldehyde Cycloadditions.J.Org.Chem.2005,70,1057-1059.
    [14]Schelwies M.;DempwolffA.L.;F.Rominger;Helmchen G.Gold-Catalyzed Intermolecular Addition of Carbonyl Compounds to 1,6-Enynes.Angew.Chem.Int.Ed.2007,46,5598.
    [15]Kang J.-E.;Shin S.Au(Ⅰ)-catalyzed cyclization of tert-butyl carbonates derived from homopropargyl alcohols:A catalytic- alternative to cyclic enol carbonates.Synlett.2006,717-720.
    [16]Sromet A.W.;Kelin A.V.;Gevorgyan V.A Novel 1,2-Migration of Acyloxy,Phosphatyloxy,and Sulfonyloxy Groups in Allenes:Efficient Synthesis of Tri- and Tetrasubstituted Furans.Angew.Chem.Int.Ed.2004,43,2280.
    [17]Patil N.T.;Yamamoto Y.Synthesis of Cyclic Alkenyl Ethers via Intramolecular Cyclization of Alkynylbenzaldehydes.Importance of Combination between CuI Catalyst and DMF.J.Org.Chem.2004,69,5139-5142
    [18]Mondal S.;Nogami T.;Asao N.;Yamamoto Y.Synthesis of Novel Antitumor Agent 1-Methoxy-5,10-dioxo-5,10-dihydro-1H-benzo[g]isochromene Carboxylic Acid (3-Dimethylylaminopropyl)amide with a Dual Role Pd(Ⅱ) Catalyst.J.Org.Chem.2003,68,9496-9498.
    [19]Patil N.T.;Wu H.;Yamamoto Y.Cu(Ⅰ) catalyst in DMF:An efficient catalytic system for the synthesis of furans from 2-(1-alkynyl)-2-alken-1-ones.J.Org.Chem.2005,70,4531-4534.
    [20]Fang Y.;Li C.CuI-catalyzed intramolecular O-vinylation of carbonyl compounds.Chem.Commun.2005,3574-3576.
    [21]Zhang J.;Schmalz H.Gold(Ⅰ)-Catalyzed Reaction of 1-(1-Alkynyl)-cyclopropyl Ketones with Nucleophiles:A Modular Entry to Highly Substituted.Angew.Chem.Int.Ed 2006,45,6704-6707.
    [22]HashmA.S.K.i;Schwarz L.;Choi J.H.;Frost T.M.Anew gold-catalyzed C-C bond formation.Angew.Chem.Int.Ed.2000,39,3285-3288.
    [23]Xiao Y.;Zhang J.Tetrasubstituted Furans by a Pd~Ⅱ-Catalyzed Three-Component Michael Addition/Cyclization/Cross-Coupling Reaction.Angew.Chem.Int.Ed.2008,47,1903-1906.
    [24]Varela J.A.;Gonzlez-Rodr(?)guez C.;Carlos Sa(?),Ru-Catalyzed Cyclization of Terminal Alkynals to Cycloalkenes.J.Am.Chem.Soc.2006,128,9576-9577.
    [25]Matsunaga,S.;Ohshima,T.;Shibasaki,M.Linked-BiNOL:An Approach towards Practical Asymmetric Multifunctional Catalysis".Adv.Synth.Catal.2002,344,3-15.
    [26]Yoshikawa N.;Kumagai N.;Matsunaga S.Direct Catalytic Asymmetric Aldol Reaction:Synthesis of Either syn- or anti-α,β-Dihydroxy Ketones.J.Am.Chem.Soc.2001,123,2466-2467.
    [27]K umagai,N.;Matsunaga,S.;Yoshikawa,N.Direct Catalytic Enantio- and Diastereoselective Aldol Reaction Using a Zn-Zn-Linked-BINOL Complex:A Practical Synthesis of syn-1,2-Diols"Org.Lett.2001,3,1539-1542.
    [28]Pu L.For a recent review on the application of binaphthyl compounds Chem.Rev.1998,98,2405-2494.
    [29]Arai T.;Sasai H.;Aoe K.A New Multifunctional Heterobimetallic Asymmetric Catalyst for Michael Additions and Tandem Michael-Aldol Reactions.Angew.Chem.Int.Ed..1996,35,104-106.
    [30]Tian,J.;Yamagiwa,N.;Matsunaga,S.Efficient Two-Step Conversion of α,β-Unsaturated Aldehydes to Optically Active γ-Oxy-α,β-unsaturated Nitriles and Its Application to the Total Synthesis of(+)-Patulolide C.Org.Lett.2003,5,3021-3024.
    [31]Yamagiwa N.;Tian J.;Matsunaga S.;Shibasaki M.Catalytic Asymmetric Cyano-ethoxycarbonylation Reaction of Aldehydes Using a YLi_3tris(binaphthoxide)(YLB)Complex:Mechanism and Roles of Achiral Additives.J.Am.Chem.Soc.2005,127,3413-3422.
    [32]Zhong Y.;You Q.Two-center catalysis in asymmetric synthesis.Chin.Org.Chem.2002,7,453-461.
    [33]Brunel J.M.BINOL:A Versatile Chiral Reagent.Chem.Rev.2005,105,857-897.
    [34]Handa,S.;Gnanadesikan,V.;Matsunaga,S.;Shibasaki,M.Syn-Selective Catalytic Asymmetric Nitro-Mannich Reactions Using a Heterobimetallic Cu-Sm-Schiff Base Complex.J.Am.Chem.Soc.2007,129,4900-4901.
    [35]Sammis G.M.;Danjo H.;Jacobsen E.N.Cooperative Dual Catalysis:Application to the Highly Enantioselective Conjugate Cyanation of Unsaturated Imides.J.Am.Chem.Soc.2004,126,9928-9929.
    1.Parr,R.G.;Yang,W.Density-functional theory of atoms and molecules.USA:Oxford Univ.Press,1989,1-352.
    2.Seminario,J.M.,Politzer,P.Modern Density Functional Theory A Tool For Chemistry.University of New Orleans,New Orleans,LA,USA:ELSEVIER,1995,1-418.
    3.Ziegler,T.Approximate density functional theory as a practical tool in molecular energetics and dynamics.Chem.Rev.1991,91,651-667.
    4.Hohenberg,R;Kohn,W.Inhomogeneous Electron Gas.Phys.Rev.B.1964,136,864-871.
    5.Kohn,W.;Sham,L.J.Self-Consistent Equations Including Exchange and Correlation Effects.Phys.Rev.A.1965,140,1133-1138.
    6.Slater,J.The Self-Consisternt Field for Molecules and Solids:Quantum Theory of Molecules and Solids,Vol.4.New York:McGraw-Hill,1974,1-152.
    7.Vosko,S.H.;Wilk,L.;Nusair,M.Accurate spin-dependent electronliquid correlation energies for local spin density calculations:a critical analysis.Can.J.Phys.1980,58,1200-1211.
    8.Becke,A.D.Density-functional exchange-energy approximation with correct asymptotic behavior.Phys.Rev.A.1988,33,3098-3100.
    9.Lee,C.;Yang,W.;Parr,R,G.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Phys.Rev.B.1988,37,785-789.
    10.Becke,A.D.Density-functional thermochemistry.Ⅲ.The role of exact exchange.J.Chem.Phys.1993,98,5648-5652.
    11.Perdew,J.P.;Wang,Y.Pair-distribution function and its coupling-constant average for the spin-polarized electron gas.Phys.Rev.B.1992,45,12947-12954.
    12.Perdew,J.P.;Chevary,J.A.;Vosko,S.H.;et al.Atoms,molecules,solids,and surfaces:Applications of the generalized gradient approximation for exchange and correlation.Phys.Rev.B.1992,46,6671-6687.
    13.Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.;Cheeseman,J.R.;Montgomery,J.A.,Vreven,J.T.;Kudin,K.N.;Burant,J.C.;Millam,J.M.;Iyengar,S.S.;Tomasi,J.;Barone,V.;Mennucci,B.;Cossi,M.;Scalmani,G.;Rega,N.;Petersson,G.A.;Nakatsuji,H.;Hada,M.;Ehara,M.;Toyota,K.;Fukuda,R.;Hasegawa,J.;Ishida,M.;Nakajima,T.;Honda,Y.;Kitao,O.;Nakai,H.;Klene,M.;Li,X.;Knox,J.E.;Hratchian,H.P.;Cross,J.B.;Adamo,C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev,O.;Austin,A.J.;Cammi,R.;Pomelli,C.;Ochterski,J.W.;Ayala,P.Y.;Morokuma,K.;Voth,G.A.;Salvador,P.;Dannenberg,J.J.;Zakrzewski,V.G.;Dapprich,S.;Daniels,A.D.;Strain,M.C.;Farkas,O.;Malick,D.K.;Rabuck,A.D.;Raghavachari,K.;Foresman,J.B.;Ortiz,J.V.;Cui,Q.; Baboul,A.G;Clifford,S.;Cioslowski,J.;Stefanov,B.B.;Liu,G.;Liashenko,A.;Piskorz,P.;Komaromi,I.;Martin,R.L.;Fox,D.J.;Keith,T.;Al-Laham,M.A.;Peng,C.Y.;Nanayakkara,A.;Challacombe,M.;Gill,P.M.W.;Johnson,B.;Chen,W.;Wong,M.W.;Gonzalez,C.;and Pople,J.A.Gaussian 03;Revision B.03;Gaussian:Pittsburgh,PA,2003.
    14.Curtiss,L.A.;Raghavachari,K.;Trucks,G.W.;Pople,J.A.Gaussian-2 theory for molecular energies of first- and second-row compounds.J.Chem.Phys.1991,94,7221-7230.
    15.Becke,A.D.Density-functional thermochemistry.Ⅳ.A new dynamical correlation functional and implications for exact-exchange mixing.J.Chem.Phys.1996,104.1040-1046.
    16.Reed,A.E.Weinstock,R.B.;Weinhold,F.Natural population analysis~(a)).J.Chem.Phys.1985,83,735-746.
    17.Bader,R.F.W.Atoms in molecules:A Quantum Theory.USA:Oxford Univ.Press,1994,1-458.
    18.Reed,A.E.;Curtiss,L.A.;Weinhold,F.Intermolecular interactions from a natural bond orbital,donor-acceptor viewpoint.Chem.Rev.1988,88,899-926.
    19.Collard,K.;Hall,G.G.Orthogonal trajectories of the electron density.Int.J.Quantum Chem.1977,12,623-637.
    20.Popelier,P.L.A.Quantum Molecular Similarity.1.BCP Space.J.Phys.Chem.A.1999,103,2883-2890.
    21.Hansch,C.;Leo,A.Hoekman,D.Exploring QSAR;ACS professional reference book;American Chemical Society:Washington DC,1995.
    22.Popelier,P.L.A.In molecular Similarity in Drug Design;Dean,P.M.,Eds.;Chapman & Hall:London,1995.
    23.Moos,W.H.;Green,G.D.;Pavia,M.R.Recent advances in the generation of molecular diversity.Annu.Rep.Med.Chem.1993,28,315-324.
    24.Martin,E.J.;Spellmeyer,D.C.;Critchlow,R.E.J.;et al.Rev.Compl.Chem.1997,10-19.
    25.Paula M.S.;Pend(?)s,A.M.;Lua(?)a,V.Polarity inversion in the electron density of BP crystal.Phys.Rev.B.2001,63,125103-125106.
    26.L(o|¨)wdin,P.O.Quantum Theory of Many-Particle Systems.I.Physical Interpretations by Means of Density Matrices,Natural Spin-Orbitals,and Convergence Problems in the Method of Configurational Interaction.Phys.Rev,1955,97,1474-1489.
    27.Jensen,F.Introduction to Computational Chemistry,John Wiley & Sons,2001,161-446.
    28.Alml(o|¨)f,J.;Taylor,P.R.Atomic natural orbital basis sets for LCAO calculations.Adv.Quantum Chem.,1991,22,301.
    29.Reed,A.E.Weinstock,R.B.and Weinhold,F.Weinhold,F.Natural population analysis~(a)).J.Chem.Phys.1985,83,735-746.
    30.Foster,J.P.;Weinhold,F.Natural hybrid orbitals.J.Am.Chem.Soc.1980,102,7211-7218.
    31.Reed,A.E.and Weinhold,F.Natural bond orbital analysis of near-Hartree-Fock water dimer.J.Chem.Phys.1983,78,4066-4073.
    32.Reed,A.E.Curtidd,L.A.and Weinhold,F.Intermolecular interactions from a natural bond orbital,donor-acceptor viewpoint.Chem.Rev.1988,88,899-926.
    33.Teng,M.B.Frontier Orbitals Theory.Chemistry.1983,11,793-800.
    34.Qi,H.Frontier Orbitals Theory.J.Zhangjiakou Tea.Col(Natural Science).1993,1,68-75.
    35.Field,M.J.Bush,R A.;Karplus,M.A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations.J.Comput.Chem.1990,11(6),700-733.
    36.Onsager,L.Electric Moments of Molecules in Liquids.J.Am.Chem.Soc.1936,58,1486-1493.
    37.Tapia,O.Goscinski,O.Self-consistent reaction field theory of solvent effects.Mol.Phys.1975,29(6),1653-1661.
    38.Mierts,S.Scrocco,E.and Tomasi,J.Electrostatic interaction of a solute with a continuum.A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects.Chem.Phys.1981,55,117-129.
    39.Miert(?),S.and Tomasi,J.Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes.Chem.Phys.1982,65,239-245.
    40.Cossi,M.Barone,V.Cammi,R.and Tomasi,J.Ab initio study of solvated molecules:a new implementation of the polarizable continuum model.Chem.Phys.Lett.1996,255,327-335.
    [1].Villar H,M Frings,Bolm C,Ring closing enyne metathesis:A powerful tool for the synthesis of heterocycles.Chem.Soc.Rev.,2007,36;55-66.
    [2].Trost B M,Yanai M,Hoogsteen K,A palladium-catalyzed[2+2]cycloaddition.Mechanism of a Pd-catalyzed enyne metathesis.J.Am.Chem.Soc.,1993,115,5294-5295.
    [3].Trost B M,Rudd M T,Ruthenium-Catalyzed Cycloisomerizations of Diynols.J.Am.Chem.Soc.2005,127,4763-4766.
    [4].Rautenstrauch V,2-Cyclopentenones from 1-ethynyl-2-propenyl acetates.J.Org.Chem.1984,49,950.
    [5].Patrick A,Caruana and Alison J.Frontier,Tetrahedron.Palladium(Ⅱ)- and mercury(Ⅱ)-catalyzed rearrangements of propargyl acetates Tetrahedron 2007,63,10646-10656.
    [6].Parr R G,Yang W,Density-functional Theory of Atoms and Molecules,Oxford University Press:New York,1989.
    [7].Gonzalez C,Schlegel H B,J.Chem.Phsy.1990,94,5523-5527.
    [8].Hay P J,Wadt W R,J.Chem.Phys.1985,82,270-283.Wadt W R,Hay P J,J.Chem.Phys.1985,82,284-297.Wadt W R,Hay P J,J.Chem.Phys.1985,82,299-310.
    [9].Ehlers A W,B6hme M,Dapprich S,et al.Chem.Phy.Let.1993,208,237-240.
    [10].Miertus S,Tomasi,J.Chem.Phys.1982,65,239-245.
    [11].Frisch M J,Trucks G W,Schlegel H B,et al.Gaussian 03;Revision B.03;Gaussian:Pittsburgh,PA.
    [12].Carpenter J E,Weinhold F,J.Mol.Struct.(THEOCHEM) 1988,169,41-50.
    [13].Reed A E,Curtiss L A,Weinhold F,Chem.Rev.1988,88,899-926.
    [14].Foster J P,Weinhold F,Natural hybrid orbitals.J.Am.Chem.Soc.1980,102,7211-7218.
    [15].Reed A E,Weinstock R B,Weinhold F,J.Chem.Phys.1985,83,735-746.
    [16].Glendening E D,Badenhoop J K,Reed A E,et al.NBO 5.0;Theoretical Chemistry Institute,University of Wisconsin,Madison,WI,2001.
    [17].Bader R F W,Atoms in Molecules,A Quantum Theory;International Series of Monographs in Chemistry;Oxford University Press:Oxford,U.K.,1990,vol.22.
    [18].Biegler-K(o|¨)nig F,Sch(o|¨)nbohm J,Derdau R.,et al.AIM 2000,version 2.0;McMaster University:2002.
    [19].Gorelsky SI,Lever A B P,Electronic Structure and Spectra of Ruthenium Diimine Complexes by Density Functional Theory and INDO/S.Comparison of the two methods.J.Organomet.Chem.2001,635:187-196
    [20].Gorelsky SI,Ghosh S,Solomon EI,Mechanism of N_2O Reduction by the m_4-Sulfide Bridged Tetranuclear Cu_Z Cluster of Nitrous Oxide Reductase.J.Am.Chem.Soc.2006,128:278-290
    [1].Matsunaga S.;Ohshima,T.;Shibasaki M,Linked-BiNOL:An Approach towards Practical Asymmetric Multifunctional Catalysis.Adv.Synth.Catal.2002,344,3-15.
    [2].Pekka M.;Joensuu;Gordon J.M.Diasteroselective Nikel-Catalyzed Reductive Aldol Cyclizations Using Diethylzinc as the stoichiometric Reductant:Scope and mechanistic Insight.J.Am.Chem.Soc.2008,130,7328-7338.
    [3].Lee C.;Yang W.;Parr.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Phys.Rev.B 1988,37,785-789.
    [4].Becke A.D.Density-functional thermochemistry,Ⅲ.The role of exact exchange.J.Chem.Phys.1993,98,5648-5652.
    [5].Hariharan,P.J.;Pople,J.A.The Influence of Polarization Functions on Molecular Orbital Hydorgenation Energies.Theor.Chim.Acta.1973,28:213-222.
    [6].Hay,P.J.;Wadt,W.R.Ab initio effective core potentials for molecular calculations.Potentials for the transition metal atoms scandium to mercury.J.Chem.Phys.1985,82,270-283.
    [7].Wadt,W.R.;Hay,P.J.Ab Initio effective core potentials for molecular calculations.Potentials for main group elements Na to Bi.J.Chem.Phys.1985,82,284-298.
    [8].Hay,P.J.;Wadt,W.R.Ab Initio effective core potentials for molecular calculations.Potentials for K to Au including outermost core orbitals.J.Chem.Phys.1985,82,299-310.
    [9].Gonzalez,C.;Schlegel,H.B.An improved algorithm for reaction path following.J.Chem.Phys.1989,90,2154-2159.
    [10].Miertus,S.Tomasi,J.Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes.Chem.Phys.1982,65,239-245.
    [11].Frisch MJ,Trucks GW,Schlegel HB,Scuseria GE,Robb MA,Cheeseman JR,Montgomery JA,Vreven Jr T,Kudin KN,Burant JC,Millam JM,Iyengar SS,Tomasi J,Barone V,Mennucci B,Cossi M,Scalmani G,Rega N,Petersson GA,Nakatsuji H,Hada M,Ehara M,Toyota K,Fukuda R,Hasegawa J,Ishida M,Nakajima T,Honda Y,Kitao O,Nakai H,Klene M,Li X,Knox JE,Hratchian HP,Cross JB,Adamo C,Jaramillo J,Gomperts R,Stratmann RE,Yazyev O,Austin AJ,Cammi R,Pomelli C,Ochterski JW,Ayala PY,Morokuma K,Voth GA,Salvador P,Dannenberg JJ,Zakrzewski VG,Dapprich S,Daniels AD,Strain MC,Farkas O,Malick DK,Rabuck AD,Raghavachari K,Foresman JB,Ortiz JV,Cui Q,Baboul AG,Clifford S,Cioslowski J,Stefanov BB,Liu G,Liashenko A,Piskorz P,Komaromi I,Martin RL,Fox DJ,Keith T,Al-Laham MA,Peng CY,Nanayakkara A,Challacombe M,Gill PMW,Johnson B,Chen W,Wong MW,Gonzalez C,Pople JA(2003) Gaussian 03,Revision B.03.Gaussian Inc,Pittsburgh PA
    [12].Glendening ED,Reed AE,Carpenter JE,Weinhold F NBO version 3.1
    [13].Carpenter J.E.;Weinhold F.Analysis of the geometry of the hydroxymethyl radical by the"different hybrids for different spins"natural bond orbital procedure.J.Mol.Struct.(Theochem) 1988,169:41-62.
    [14].Charpenter J.E.PhD Thesis,University of Wisconsin,Madison,WI,1987.
    [15].Foster J.P.;Weinhold F.Natural hybrid orbitals.J.Am.Chem.Soc.1980,102,7211-7218.
    [16].Reed A.E.;Weinhold F.Natural bond orbital analysis of near-Hartree-Fock water dimer.J.Chem.Phys.1983,78:4066-4073
    [17].Reed,A.E.;Weinhold,F.Natural localized molecular orbitals.J.Chem.Phys.1985,83,1736-1740.
    [18].Reed A.E.;Weinstock R.B.;Weinhold F.Natural population analysis.J.Chem.Phys.1985,83,735-746.
    [19].Reed A.E.;Curtiss L.A.;Weinhold F.Intermolecular interactions from a natural bond orbital,donor-acceptor viewpoint.Chem.Rev.1988,88,899-926.
    [20].Weinhold F.;Carpenter J.E.Plenum.1988,227-236
    [21].Glendening E.D.Badenhoop J.K.;Reed A E.NBO 5.0:Theoretical Chemistry Institute,University of Wisconsin,Madison,WI,2001.
    [22].Bader R F W,Atoms in Molecules,A Quantum Theory;International Series of Monographs in Chemistry;Oxford University Press:Oxford,U.K.,1990,vol.22.
    [23].Biegler-K(o|¨)nig,E;Sch(o|¨)nbohm,J.;Derdau,R.;Bayles,D.;Bader,R.E W.AIM 2000.version 1.2000.
    [24].Gorelsky,S.I.;Lever,A.B.P.Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S.Comparison of the two methods.J.Organomet.Chem.2001,635,187-196
    [25].Gorelsky SI.AOMix:Program for Molecular Orbital Analysis;York University:Toronto,Canada,1997;http://www.sf-chem.net/.
    [26].Mulliken R.S.J.Chem.Phys.1955,23,1833
    [27].Mulliken R.S.J.Chem.Phys.1955,23,1841
    [28].Mulliken R.S.J.Chem.Phys.1955,23,2338
    [29].Mulliken R.S.J.Chem.Phys.1955,23,2343
    [30].Gorelsky S.I.;Ghosh S.;Solomon E.I.Mechanism of N_2O Reduction by the μ~4-S Tetranuclear Cu_Z Cluster of Nitrous Oxide Reductase.J.Am.Chem.Soc.2006,128:278-290.
    [31].Montgomery J.Review:Nickel-Catalyzed Reductive Cyclizations and Couplings.Angew.Chem.Int.Ed.2004,43,3890-3908.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700