用户名: 密码: 验证码:
热连轧GH4169合金的组织结构与蠕变行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对等温锻造及热连轧GH4169合金进行不同条件的热处理、蠕变性能测试及组织形貌观察,研究了热处理制度对合金蠕变性能的影响;通过蠕变曲线的测定及变形合金的微观形貌观察,计算出不同工艺处理合金的蠕变激活能和应力指数,研究了不同状态合金在蠕变期间的变形与断裂机制。
     结果表明:与等温锻造合金相比,热连轧合金具有较小的晶粒尺寸;经直接时效后,热连轧GH4169合金在晶内析出大量弥散分布的细小γ″相;经长期时效后,有较多粒状、短棒状碳化物沿晶界不连续析出。在试验的温度和应力范围内,测定出等温锻造合金在蠕变期间的蠕变激活能为Q_a=519.3kJ/mol;与等温锻造合金相比,热连轧GH4169合金具有较高的蠕变抗力;计算出热连轧合金经直接时效和长期时效后的蠕变激活能分别为Q_a=559.2kJ/mol和Q_a=541.1kJ/mol。与其它制备工艺相比较,热连轧合金经直接时效处理后,具有较好的蠕变抗力,其在660℃、700MPa条件下的蠕变寿命达127小时。在蠕变期间,等温锻造态合金仅发生孪晶变形;热连轧态合金的变形机制是孪晶和孪晶内的位错滑移,并确定出孪晶面为{111}。其中,合金在热连轧期间形成的“预存”位错可激活蠕变位错在孪晶内发生单取向和多取向滑移,减缓因形变产生的应力集中,是提高热连轧合金蠕变抗力,延长蠕变寿命的主要原因。两种工艺制备合金经直接时效处理后,其蠕变期间的断裂方式均为沿晶解理断裂,且断口表面光滑,无明显析出物;蠕变后期,裂纹在与应力轴垂直的晶界处萌生,并沿晶界发生裂纹扩展是合金的蠕变断裂机制。而热连轧合金经过长期时效处理后,蠕变断裂后呈现非光滑断口表面,其中,沿晶界析出的碳化物晶界膜对合金的晶界强度影响较小,是使合金具有较长蠕变寿命的主要原因。
In the paper,compared to the calcalation of creep activation energy and stress exponent,the influence of heat treatment regimes on the microstructure and creep properties of the forged and hot continuous rolling GH4169 alloy are investigated by means of heat treatment,creep properties measurment and microstructure observation,and the deformation mechanisms of the alloy during creep is discussed.
     Results show that,compared to the forged alloy,the finer grains is displayed in the hot continuous rolling alloy,and the finerγ″phase is dispersely precipitated within the grains after direct aged treatment(DA),but signficant amount carbides with short stick shape are discontinuously precipitated along the grain boundary.In the range of experimental temperatures and stresses,the activating energy of the forged alloy during creep is calculated as Q_a = 519.3kJ/mol.Compared to the forged alloy,the hot continuous rolling(HCR) alloy displays a better creep resistance,and the activation energies of DA-HCR and LTA-HCR alloys during creep are calculated to be Q_a = 559.2 kJ/mol and Q_a = 541.1 kJ/mol.Compared with other preparing technology,after direct aged treatment,the HCR alloy have a better creep resistance,and the creep lifetimes of the alloy is measured as 127 h in the applied stress of 700MPa at 660℃.During creep,the deformation feature of the forged alloy is twinning,the deformation mechanisms of the HCR alloy is the twinning and dislocations slipping within the twins,and the twinning plane activated during creep is determined as { 111 } plane.If the dislocations formed during hot rolling is defined as "pre-reserved ones,the ones may activate the creep dislocations occurring the single and double orientations slipping within the twinning to stave the stress concentrition, this is a main reason of enhancing the creep resistance and prolonging lifetimes of the alloy. After direct aged,the fracture modes of both forged and HCR alloys during creep are identified as the intergranular fracture,and appearring the smooth surface of the grain. During the later stage of creep,it is the fracture mechanism of the alloy during creep that the cracks are budded on the boundaries vertical to the applied stress axis,and expanded along the boundaries.But after crept up to fracture,the fracture of the long term aged HCR alloy displays a nonsmooth surface,thereinto,the carbides film formed on the boundaries has a few effect on the boundaries strength of the alloys,this is a main reason of prolonging the creep lifetimes of the alloy.
引文
[1]何明辉,李海燕,聂景旭.DD6单晶合金的高温蠕变损伤研究.燃气涡轮试验与研究,2002,(1):24-28.
    [2]Francis,M.Versnyder,E.Shank.Development of columnar grain and single crystal high temperature materials through directional solidification.Mate.Sci.Eng.A6,1970,6(4):213-247.
    [3]F.L.VerSnyder,R.W.Guard.Directional grain structures for high temperature strength.Scripta Metall.Mater.1960,52:485-493.
    [4]J.R.Stephens,R.L.Dreshfield,M.V.Nathal.Refractory Alloying Elements in Superalloys,Metal Park:ASM,1984:39-44.
    [5]田素贵.单晶镍基合金组织演化与蠕变行为及微观特征的研究:[博士学位论文].沈阳:东北大学,1998.
    [6]陈金国.军用航空发动机的发展趋势.航空科学技术,1994,(5):9-12.
    [7]K.Jumonji,S.Ueta,Miyahara A et al.Rapid work hardening caused by cube cross slip in Ni_3Al single crystals.Phil.Mag,1996,73(2):345-364.
    [8]J.M.Oblak,D.F.Pauionis,D.S.Duvall.Coherency strengthening in Ni-Base alloys hardened by D0_(22) precipitates.Metall.Trans,1974,5(1):143-153.
    [9]J.L.Burger,R.R.Biederman,W.H.Couts.The effects of starting condition on the aging response of As-Forged alloy 718."Superalloy 718-Metallurgy and Applications",eds.Loria E A,TMS,1989:207-217.
    [10]鲁凤鸣,金谨秀.GH169合金涡轮盘件长期时效组织稳定性的研究.金属学报.1995,31(7):14-16.
    [11]冶军.美国镍基高温合金.北京科学出版社,1979:62-68.
    [12]M.W.Mahoney.Superplatic properties of alloy 718.Superalloy 718 Metallurgy and Applications,eds.E.A.Loria,TMS,1989:391-405.
    [13]M.Chang,P.Au,T.Terada and A.K.Koul.Damage tolerance of alloy turbine disc material.Superalloys 1992,eds.S.D.Antolovich et al,TMS,1992:447-456.
    [14]B.Pieraggi,J.F.Uginet.Fatigue and creep properties in relation with alloy 718 microstructure.Superalloys 718,625,706 and Various Derivatives,eds.E.A.Loria,TMS,1994:535-544.
    [15]D.D.Krueger.The development of direct age 718 for gas turbine aging disk applications.Superalloy 718-Metallurgy and application,eds.E.A.Loria,TMS,1989:279-296.
    [16]W.Dix,J.M.Hyzak,R.P.Singh.Application of ultra fine grain alloy 718 forging billet.Superalloys 1992,eds.S.D.Antolovich et al,TMS,1992:23-32.
    [17]凌斌,钟炳文,杨玉荣.GH4169合金的相变研究.航空材料学报.1994,1(4):1-7.
    [18]杨玉荣.变形GH4169(Inconel718)合金的发展与应用.GH4169合金应用研究文集.1996:16-21.
    [19]金建军,刘建宇,周瑞发.GH33A合金的特殊直接时效工艺研究.材料工程.1999,(10):30-34.
    [20]张志伟,金谨秀,张玉春.DA工艺GH 169合金盘件组织性能探讨.材料工程.1995,(6):31-35.
    [21]刘文昌,陈宗霖,姚枚.冷轧变形对Inconel718合金γ′相析出行为的影响.航空学报.1999,20(3):279-282.
    [22]P.S.Dararaman,S.Bane.Some Aspects of the Precipitation of metastable intermetallic phase in Inconel718.Metall.Trans,24A.1992,23(7):2015-2028.
    [23]C.M.Sellars,J.A.Whiteman.Recrystallization and grain growth in hot working,Metal Science,3(1979),187-194.
    [24]M.Gergely,P.Tardy,M.Sellars.Mathe.treatment of non-isothermal transformation,Mater.Sci.Tech.,3(1987),No.5,365-371.
    [25]E.Ruibal,J.J.Urcola,M.Fuentes.Recrystallized grain size and grain growth in a low-alloy steel after hot deformation in torsion,Mate.Sci.Tech,1(1985),No.9,732-737.
    [26]P.D.Hodgson,R.K.Gibbs.A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels,ISIJ International,32(1992),No.12,1329-1338.
    [27]E.A.Wilson.The transformation in low carbon iron,ISIJ International,34(1994),No.8,615-630.
    [28]Y.Saito,C.Shiga.Computer simulation of microstructural evolution in thermo-mechanical processing of steel plates,ISIJ International,32(1992),No.3,414-422.
    [29]Y.Saito,T.Enami,T.Tanaka.Mathematical model of hot deformation resistance with respect to microstructure change during rolling.Transactions of ISIJ,25(1985),1146-1155.
    [30]I.V.Samarasekera,D.Q.Jin,J.K.Brimacombe.The application of microstructural engineering to the hot rolling of steel,38th MWSP Conf Proc,ISS,1997,34:313-327.
    [31]J.Andorfer,G.Hribernig,A.Lugar.For the first time ever:Full metallurgical control of the mechanical properties of hot-rolled strip with VAI-Q strip,Iron and Steel,36(2001),No.1,42-46.
    [32]H.Yada,T.Semuma.Resistance to hot deformation of steel,J.Japan Soc.Tech.Plasticity,27(1986),34-44.
    [33]R.Kopp,R.Karnhausen,M.M.Souza.Numerical simulation method for designing thermo-mechanical treatment,illustrated by bar rolling,Scand.Journal of Metall,20(1991),351-360.
    [34]G.S.Shen,S.L.Semiatin,R.Shivpuri.Modelling microstructural development during the forming of Wasploy,Metall.Mater.Trans,26A(1995),1795-1803.
    [35]Y.Saito.Modelling of microstructural evolution during thermomechanical processing of structural steels,Mater.Sci.Eng,A223(1997),134-145.
    [36]S.C.Medeiros,Y.V.R.K.Prasad,W.G.Frazier,R.Srinivasan.Microstructural modeling of metadynamic recrystallization in hot working of IN 718 superalloy,Mater.Sci.Eng,A193(2000),198-207.
    [37]R.Ding,Z.X.Guo.Microstructural modeling of dynamic recrystallization using an extended cellular automation technology,Computational Mater.Sci,23(2002),209-218.
    [38]许云波,刘相华,王国栋.低碳钢热连轧过程中工艺参数及组织演变的预测,钢铁,37(2002),No.9,47-51.
    [39]M.Pietrzyk,Finite-element based model of structure development in the hot-rolling process,Steel Research,61(1990),603-604.
    [40]K.Karhausen,T.Kopp,Model for integrated process and microstructure simulation in hot forming,Steel Research,63(1992),247-249.
    [41]S.Nanba,M.Kitamura,M.Shimada.ISIJ International,32(1992),377-379.
    [42]Y.Liu,J.Jin.Modelling of microstructural evolution in multipass hot rolling,Journal of Materials Processing Technology,143-144(2003),723-728.
    [43]S.X.Zhou.An integrated model for hot rolling of steel strips,J.Mater.Proc.Tech,134(2003),338~351.
    [44]H.Dyja,P.Korczak.The thermal-mechanical and microstructural model for the FEM simulation of hot plate rolling,J.Mater.Proc.Tech,92-93(1999),463~467.
    [45]X.T.Li,M.T.Wang,F.S.Du.A coupling thermal mechanical and microstructural FE model for hot strip continuous rolling process and verification,Mater.Sci.Eng,A408(2005),33~41.
    [46]J.X.Dong,X.S.Xie,S.H.Zhand.Coarsening behavior of γ″ precipitates in modified Inconel718 Superalloy.Scripta Mater,1995,33(12):1933~1939.
    [47]Y.F.Han,P.Deb,M.C.Chaturvedi.Coarsening behavior of γ″ and γ′ particles in Inconel718.Metallurgical Science.1982,16(12):555~561.
    [48]A.Kalogeridis,M.Kolbe,E.Nembach.The effect of chromium on the solubility limits of the γ′-Forming elements in a Ni-Fe-Cr base superalloy,Scripta Mater,1994,31(9):1239~1242.
    [49]M.Sundararaman,P.Mukhopadhyay,S.Banerjee.Precipitation and room temperature deformation behavior of Inconel 718.Various Dervatives,ets.E.A.Loria,TMS,1994:419~440.
    [50]M.G.Burke,M.K.Miller.Precipitation in Alloy 718:A combined AEM and APFIM Investigation.Superalloys 718,625,706 and Various Derivatives,eds.E.A.Loria,TMS,1991:337~350.
    [51]Kirman I and D.H.Warrington.The Precipitation of Ni_3Nb phase in a Ni-Fe-Cr-Nb alloy[J].Metall.Trans,1970;1:2667~2675.
    [52]M.C.Chaturvedi and Han Ya-Fang.Strengthening mechanisms in Inconel 718 supoyalloy[J].Metal.Sci,1983;17:145~149.
    [53]J.M.Oblak,D.S.Duvall and D.F.Paulonis.Coherency strengthening in Ni base alloys hardened by D0_(22)γ″ precipitates[J].Metall Trans,1974;5:143~153.
    [54]G.Vanderschaeve and B.Escaig Cross-slip of twinning dislocations on crossing domain boundaries in ordered Ni_3V[J].Philo Mag,A,1983;48:265~277.
    [55]J Koike,T Kobayashi,T Mukai,H Watanabe,et al.The activity of non-basal slip system and dynamic recovery at room temperature in fine-grained AZ31B Mg alloys.Acta Mater,2003;51:2055~2065.
    [56]J A Yoo,H Trinkaus.Crack and cavity nucleation at interfaces during creep.Metall.Trans.1983,14A(4):547~561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700