用户名: 密码: 验证码:
“四位一体”生态农业模式能流研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“四位一体”生态农业模式是近些年来在我国北方发展和推广较快的一种生态农业类型,它巧妙地利用食物链加环技术,在设施上将日光温室、畜(禽)舍、厕所、沼气池联体构建,改变了传统的单一种植方式,实现了种植、饲养的有机结合,并通过沼气池的厌氧发酵作用,实现了有机物的多级循环利用。在同一块地上实现了产气积肥同步,种植与养殖并举的周年环保型生产机制。该模式能够有效解决农村能源供应与高效利用、有效保护农村生态环境,是促进农村经济快速、健康发展的一项重要手段,这对于燃料、肥料、饲料俱缺,生态环境恶劣,经济发展相对滞后的北方半干旱雨养农业区农业发展意义重大。
     本论文基于将“四位一体”生态农业模式确定为一个完整的生态系统,从生态系统生态学的角度对该系统的能量流动状况进行了初步研究。
     通过2001年对“四位一体”生态农业模式生态系统能量流动状况的研究,得出如下结论:
     1、在整个生长季节“四位一体”生态农业系统输入能量总计1109820MJ,其中93.43%为太阳能,辅助能输入总计72930MJ,占总能量输入的6.57%。系统共输出能量25630MJ总能量输入输出比为43:1。在能量输出中以饲养系统为最高,占总能量输出的45.65%;其次为厌氧发酵系统占总能量输出的28.28%再次为种植系统,占26.07%。
     2、种植系统收获果实的生物量为1321.0kg,干重为118.89kg,输出能量为2240MJ;生产的茎叶、秸秆总量为1144.26kg,干重为186.07kg,输出能量3500MJ;地下部分鲜重为377.10kg,干重为50.23kg,输出能量9400MJ。平均生物产量为8.46kg/m~2,经济产量为3.93 kg/m~2。整个生长季节种植系统生产的总生物量为2842.36kg,干重355.19kg,光合作用固定的总能量为6680MJ。其中用于经济产出的能量占总固定能量的33.53%。初级生产力(E%)为1.37。
     3、饲养系统中,共投入饲料1451.58kg,输入能量17820MJ;共产生猪451.44kg,输出能量11700MJ;试验期内四头猪共排粪1576kg,排尿2076kg,输出能量13100MJ。
    
     该系统饲喂料重比为3.75:l,能量投入产出比为1.52:l,饲料与产肉比率为4.30:
     1。饲料利用效率为ZI%。
     4、在厌氧发酵系统共输入人粪便 6056 kg,猪粪便共计 5392 kg,orA8de合
     计41540w,共产沼气124.7f,输出gs 2610MJ,沼液6000呛,输出g馒46灿,
     沼渣3300 kg,输出s84180MJ,该系统输出能量合计7250MJ。厌氧发酵系绷瞳
     输入与输出比为5.72:1,能量转化效率为17.45%。
     5、在辅助能的输入中生物辅助能是其主体,占总辅助g獭入的88.4Ch,工业
     辅助能中以间接工业辅助能输入为主,占总辅助能输入的 11.60%,直接工业辅助
     能仅占 0.i 8%。在辅助能的各项投入中以有机肥为最多,占总辅助能输入的 59.98%,
     其次为饲料占24.43%。
     6、日光温室夜间散热的主要途径,前屋面贯流放热、上壤横向传导放热和缝
     隙间放热三者之间的比例为川.6:2.7:1.0。
     通过冰四位一体”日光温室中不同施肥条件下的西葫芦品质分析的研究发现,
     其基本营养成分和氨基酸含量存在差异,前者氨含量低于后者 16.4%。
"Four-in-one" eco-agricultural model is one kind that has a rapid development in north China in recent years. The model which ingeniously used added-ring technology of the food chain, composed integrated with sunlight greenhouse, animal house, toilet and biogas cellar, the model changed traditional solo planting method into organic combining with planting and breeding together, realized multi-circle utilization of organic matter by ferment function of biogas cellar. The model realized gas producing in pace with manure-accumulation together, and was a production mechanic in whole year combining \\ith planting and breeding which was also good to environment protection in the same field. The model could effectively solve the supplication and utilization of energy resources, could protect eco-emoronment of the rural region, and promote the rural economy to quickly and healthy development as well. It has important significance for agricultural development of rained agricultural region in north China where are also shortage of fuel, fertilizer and forage, have adverse eco-environment, and are backward in economic development.
    Based on defined "four-in-one" eco-agricultural model as an integrated eco-system. The paper has studied on energy flowing of the "four-in-one" eco-agricultural system in 2001, the results are listed as follow.
    1. In whole growing season, the input energy of the "four-in-one" eco-agricultural system added up to 1109820MJ, the percent of solar energy and the auxiliary energy are respectively 93.43% and 6.57%; the output energy added up to 25630MJ; the ratio of input/output of energy was 43:1; the sequence of output energy were the breeding system, the ferment system and the planting system, the percentage of output energy were respectively 45.65%, 28.28% and 26.07%.
    2. In planting system, the harvested fruits were 1321 .Okg, corresponding to 188.89kg dry material and 2240MJ output energy; the produced straw were 1144.26kg, corresponding to 186.07kg dry material and 3500MJ output energy; the roots were 377.10kg, corresponding to 50.23kg dry material and 9400MJ output energy; the total biomass were 2842.36kg, corresponding to 355.19kg dry material and 6680MJ output energy. The average biomass yield was 7.36kg/m:!, and the average economic yield was 3.93 kg/in1. The percentage of the output energy for economic production of total fixed energy was 33.53%. The primary productivity (E%) was 1.37%.
    
    
    
    3. In breeding system, the input forage was 1451.58kg, corresponding to 17820MJ input energy; the output of pig was 451.44kg, corresponding to 11700MJ output energy; the output of excrement and urine was 3652kg, corresponding to 13100MJ output energy. The ratio of forage/pig was 3.75:1; the ratio of input/output of energy was 1.52:1 ;the ratio of forage/meat was 4.30:1. The forage use efficiency was 21%.
    4. In the ferment system, the input of excrement and urine was 11448kg, corresponding to 41540MJ input energy; the output of biogas gas was 124.7mJ, corresponding to 2610MJ output energy; the output of biogas slurry was 6000kg, corresponding to 460MJ output energy; the output biogas residues was 3300kg, corresponding to 4180MJ output energy; the total output energy was 7250MJ. The ratio of input/output of energy was 5.72:1; the transform percentage of energy was 17.45%.
    5. The auxiliary energy included in biological energy subsidies and industry energy subsidies: the biological energy subsidies was main part of auxiliary energy, amount to 88.40%; the most input of industry energy subsidies was indirect industry energy subsidies which was 11.60% of the total auxiliary energy, the direct industry energy subsidies was 0.18%. Besides, organic matter and forage occupied the important part in auxiliary energy, respectively amount to 59.98% and 24.43%.
    6. In sunlight greenhouse, heat were lost by three ways in the night, including on front side heat loss, soil horizontal conducting heat loss and crevice heat loss. The ratios were 10.6:2.7:1.0.
    Besides, another experiment was conducted,
引文
1、董淑萍.1995.北方庭院生态农业工程模式及其效益分析.生态农业研究,3(2):75-78
    2、王春祥等.1998.四位一体生态农业模式及其应用.生态农业研究,6(1):77-79
    3、路明.2000.建设生态农业是实现现代化的必由之路.生态农业研究,8(2):1-4
    4、陆立银等.2000.四位一体生态日光温室的功能特点及应用问题.甘肃农业科技,(11):43-45
    5、郭惠卿等.1995.畜菜互补生态系统综合研究Ⅰ.农业工程学报,11(2):115-118
    6、李振海等.1995.畜菜互补生态系统综合研究Ⅱ.农业工程学报,11(2):119-115
    7、蔺海明 胡恒觉.1992旱地农业生态学.兰州:兰州大学出版社
    8、王秋杰等.1998.农林牧复合生态经济系统在我国农业可持续发展中的地位与作用.态农业研究,6(1):52-56
    9、张岳.1998.沼气及其发酵物在生态农业中的综合利用.农业环境保护,17(2):94-95
    10、王素珍,王孟杰.1993.生物质能的开发与利用.农业工程学报,9(4):51-57
    11、黄国锋.1999.无公害蔬菜生产基地环境质量评价.环境科学研究,12(4):53-56
    12、王修兰.1995.CO2浓度增加对作物影响的实验研究进展.农业工程学报,11(2):103-108
    13、王修兰等.1995.环境CO2浓度玉米生育生理及产量的影响.农业工程学报,11(2):22-25
    14、金秀满等.1994.综合能源自给型农业系统(IESAS)经济分析方法.农业工程学报,10(2):11-17
    15、王革华等.1993.用社会统计方法及其软件包分析评价用户沼气池应用效益.农业工程学报,9(2):101-114
    16、王革华.1994.农村能源建设对减排SO_2和CO_2贡献分析方法.农业工程学报,15(1):169-172
    17、卞有生.1999.农业生态工程中生态效益的计算与分析.农村生态环境,15(1):1-4
    18、贺亮等.1998.建立我国农村可持续发展能源战略的技术改进对策.农业工程学报,14(3):21-27
    19、王革华.1992.农村能源综合建设效益评价及灰色系统方法应用.农业工程学报,8(3):60-66
    20、赵跃龙等.1999.生态农业技术含量测定方法的研究.农业工程学报,15:(1):41-45
    21、李元哲等.1994.日光温室微气候的模拟与实验研究.农业工程学报,10(1):130-136
    22、陈端生.1994.中国节能日光温室建筑与环境研究进展.农业工程学报,10(1):123-129
    
    
    23、吴德让等.1994.日光温室地下热交换系统的理论研究.农业工程学报,10(1):137-143
    24、吴德让等.1994.日光温室地下热交换系统的实验和优化设计研究.农业工程学报,10(1):144-149
    25、吴毅朋等.1992.温室采光设计的理论分析方法.农业工程学报,8(3):73-84
    26、孙忠富等.1993.日光温室中直射光的计算机模拟方法.农业工程学报,9(1):36-42
    27、孙忠富等.1993.北京地区典型日光温室直射光环境的模拟与分析.农业工程学报,9(2):45-51
    28、陈端生等.1992.日光温室气象环境综合研究(三).农业工程学报,8(4):78-82
    29、杨晓光等.1994.日光温室气象环境综合研究(四).农业工程学报,10(1):150-156
    30、唐春福.1999.北方农村能源生态模式特点及其推广机制.中国沼气,17(1):30-32
    31、陈新.1999.推广沼液浸种提高粮食产量.中国沼气,17(3):35
    32、杭德荣等.1999.农村沼气池处理粪便防病效果现状评价.中国沼气,17(3):25-26
    33、朱建华等.1998.农户沼气池建设成本效益评价方法的讨论.中国沼气,16(3):45-47
    34、孙智敏等.1998.渭源地区多种材料的产沼气比较实验.中国沼气,16(3):13-15
    35、史殿林,李胜.北京市农村能源生态模式综合效益浅析.中国沼气,16(4):22-23
    36、吴尚作.1997.沼液浸种增产技术的研究推广.中国沼气,15(1):35-36
    37、邵纯花等.1997.浅谈沼气综合利用与生态农业.中国沼气,15(1):38-40
    38、周雄军.1997.地域特色与生态农业.中国沼气,15(1):48-51
    39、李书军,胡海良.1997.恭城县开展“三沼”综合利用的经济评价.中国沼气,15(2):42-44
    40、洪文思,林丽娟.1997.沼肥对苦瓜增产效应初探.中国沼气,15(3):44-45
    41、邱凌等.1997.沼液浸种对旱地小麦苗期发育的影响.中国沼气,17(1):42-44
    42、卞有生.1999.留民营农业生态工程能量流分析与计算.生态农业研究,7(3):71-72
    43、赵跃龙等.1999.生态农业技术进步率测定方法研究.生态农业研究,7(1):55-57
    44、潭传凤,李家成.1997.农业生态系统功能评价.生态农业研究,5(1):31-36
    45、张无故等.1997.沼气及其残留物综合利用途径、作用与效益.生态农业研究,5(2)30-32
    46、齐志广.1997.塑料温室生态环境调整技术的研究.生态农业研究,5(2):57-60
    47、耿玉亮.2000.温室生产施用沼肥的试验.中国沼气,18(1):31-32
    48、白永宏等.2000.陕北四位一体庭院生态模式及其效益分析.生态农业研究,8(2):72-74
    49、黎东开,罗远州.2000.生态农业组合技术理论及效益评价原理浅析.生态农业研究,8(2):89-92
    
    
    50、孙振友等.2000.“四位一体”高产高效农业技术实验.中国沼气,18 (2):37-39
    51、肖正兴等.2000.沼肥应用于西瓜种植效果好.中国沼气,18(2):35-36
    52、王西平等.2000.利用工业尾气进行大棚蔬菜CO_2施肥技术体系研究.中国沼气,18(1):53-55
    53、徐曾符.1981.沼气工艺学.北京:农业出版社
    54、邓新.1983.沼气开发手册.北京:能源出版社
    55、李长生.1995.农家沼气实用技术.北京:金盾出版社
    56、赵怀英.1986.农村能源实用技术.北京:能源出版社
    57、孙羲.1991.植物营养与肥料.北京:农业出版社
    58、邱凌.1997.沼气与庭院生态农业.北京:经济管理出版社
    59、彭景勋.1997.小康型沼气池.北京:中国农业出版社
    60、席运官等.1999.蔬菜有机与无机生产系统能流、经济流的比较研究.生态农业研究,7(2):39-41
    61、陈瑞生.1993.北京节能型日光温室研究与应用.北京:中国农业科技出版社
    62、《农业技术经济手册》编委会.1984.农业技术经济手册.北京:农业出版社
    63、张真和主编.1995.高效节能日光温室园艺.北京:中国农业出版社
    64、孙儒泳.1987.动物生态学原理.北京:北京师范大学出版社
    65、王树忠.1993.节能型日光温室结构研究与应用.北京:中国农业科技出版社
    66、奥德姆著,蒋有绪等译.1993.系统生态学.北京:科学出版社
    67、奥德姆著,孙儒泳等译.1981.生态学基础.北京:人民教育出版社
    68、蔡晓明.2000.生态系统生态学.北京:科学出版社
    69、蔡晓明.1993.生态学及其认识论意义.现代科学的哲学探讨.北京:北京大学出版社
    70、尹钧等.1999.农田能量投入产出规律的研究.干旱地区农业研究,17(3):97-102
    71、卞有生等.1994.能量生态学在农业生态系统研究中的应用.农村生态环境,10(1):9-12
    72、中国农业工程研究设计院,北京农业工程大学编.1993.农业工程手册(3).北京:农业出版社
    73、赵天宏等.1999.沈阳市桃仙镇农业生态系统能流结构分析.沈阳农业大学学报,30(5):494-497
    74、尹钧等.2000.农田合理投能区域与最优投能配比的研究.应用生态学报,11(2):223-227
    75、吴佐礼.1994.农业生态系统能流分析中几个问题的探讨.农村生态环境,10(3):69-72
    76、范大路,丁中民.1999.生态农业投资总量限定性独立型项目的评选.西南农业大学学报,21(2):199-202
    
    
    77、张壬午等.1998.论农业生态工程.生态农业研究,6(1):14-19
    78、马世骏,王如松.1984.社会-经济-自然复合生态系统.生态学报,4(1):1-9
    79、马世骏,李松华.1987.中国的农业生态工程.北京:科学出版社
    80、沈亨理等.1993.中国农业现代化与发展阶段的生态经济分析.生态农业研究,1(2):15-26
    81、颜京松等.1994.中国与西方国家的生态工程比较.农村生态环境,10(1):45-52
    82、王文学.1991.生态农业原理及应用.北京:人民出版社
    83、卞有生主编.2000.生态农业中废弃物的处理与再生应用.北京:化学工业出版社
    84、卞有生,张凤延.1999.中国农业生态工程的理论与实践.北京:中国环境科学出版社
    85、王如松.1990.系统生态学——回顾与思考.现代生态学透视.北京:科学出版社
    86、Edwards, C. A. 1989. The importance of integration in sustainable agricultural systems. Agriculture, Ecosystem and Environment. 27:25-35
    87、Chen Duanshan 1991. Technology of the energy-saving sunlight greenhouse in China. The proceedings of international symposium on applied technology of greenhouse. Knowledge Publishing House
    88、Chandra, P. 1980. A time dependent analysis of greenhouse thermal environment. Trans. of the ASAE. 24(2):442~449
    89、Cohen, J. E., D. Tilman 1996. Biosphere 2 and biodiversity: The lessons so far. Science Vol. 274:1150~1151
    90、Downs, R. J.,H. Hellmers 1975. Environment and the experimental control of plant growth. Academic Press
    91、Guo Huiqing 1992. Analysis of solar energy gain and simulation of temperature for greenhouse ICAE. Peking
    92、Kindedelan, M. 1980. Dynamic modeling of greenhouse environment. Trans. The ASAE. 23(6):1232~1239
    93、Willits, L.H. 1985. Modeling solar energy storage system for greenhouse. J. Agri. Eng. Res. 32(1):87~93
    94、Spedding, C.R.W. 1979. An introduction to agricultural systems. Applied Science. Publishers Ltd, London, England
    95、Whittle, R.N., W.J.C. Lawrence 1959. The elimatologic of greenhouse. Part I. Natural illumination. J. Agric. Eng. Res. 5:36~41,165~178,235~240
    96、Takakura, T. 1968. Predicting air temperature in the glasshouse(Ⅰ).J. Meteorol. Soc. Japan Ser. Ⅱ. 46(1):36~44
    
    
    97. Deangelis, D. L. 1980. Energy flow, Nutrient cycling and ecosystem resilience. Ecology 61:764-771
    98. Edwards,R. I., L. J. Moulsey 1958. Preliminary measurement of the distribution of light in a glasshouse. J. Agric. Eng. Res. (3) :69
    99. Duncan, G. A. 1981. Simulation of energy flows in a greenhouse: Magnitude and conservation potential. Trans. of the ASAE. 24(6) : 1014-1021
    100. Bartok, J. W. 1979. Energy conservation-the key to solar greenhouse success. Proceedings of the second conference on energy-conserving, solar-heated greenhouse (edited by John Hayes & Dennis Jaehne). pp167-172
    101. Lowrance R, et al. 1984. Agriculture ecosystem. Wiley Interscience, N Y
    102. Chapman S B. 1976. Methods in plant ecology. Blackwell, Oxford
    103. Christensen N L, J F Franklin.1997. Ecosystem function and ecosystem management. In Simpson R D, et al(eds). Ecosystem Function & Hunan Activities. Chapman & Hall.
    104. Bernard J N. 1981. Environmental science. Prentice-Hall
    105. Vogt K A, J C Gordon, et al. 1997. Ecosystems: balancing science with management. springer, N Y, USA
    106. Stiling P D. 1992. Introduction ecology. Prentice Hall, Englewood Cliffs
    107. Odum E P. 1971. Fundamentals of ecology. W. B. Saunders, Philadelphia
    108. Odum E P. 1983. Basic ecology. Saunders College Publishing, Philadephia
    109. Odum H T. 1989. Energy, environment and pub1icy. UNEP
    110. Odum E P. 1992 Great ideas in ecology for the 1990s. Bioscience, 42(7) :542-545
    111. Odum H T. 1983. Systems ecology. An introduction. J Wiley& Sons, New York
    112. Klijin F(ed). 1994. Ecosystem classification for environment. Kluwer Academic Publishers

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700