用户名: 密码: 验证码:
编码t-PA基因慢病毒载体的构建及其制备体系的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组织型纤溶酶原激活剂(tissue-type plasminogen activator,t-PA)是人体内存在的多区域丝氨酸蛋白酶,它可以特异性地激活纤溶酶原转变为纤溶酶,后者能在血栓局部有效地溶解血栓中的纤维蛋白,使血管再通,是治疗血栓性疾病的特效药。正常人体组织内,t-PA分布广,但含量非常低。随着科学技术的发展,t-PA的生产也经历了从原组织中提取、原核生物表达、真核细胞表达和动物乳腺生物反应器表达等几个发展阶段。目前动物乳腺生物反应器制备t-PA已实现产业化,但是仍存在整合率低,转基因动物遗传不稳定,转基因动物生长周期长等问题。
     病毒载体是目前转移基因的最优手段之一。慢病毒载体因为可以介导外源基因在非分裂细胞中稳定高效地表达而成为转基因动物和基因治疗研究的重要工具。在本课题中,我们拟克隆人t-PA酶活性区域,然后构建慢病毒载体,通过四质粒包装体系生产慢病毒颗粒,从而为下一步研制转基因高等模式动物及基因功能的研究提供条件。
     本研究通过高效Trizol试剂快速从黑色素瘤细胞中提取总RNA,自行设计引物采用RT- PCR获得t-PA基因酶活性区域(K2区和P区) cDNA,经测序鉴定后与GenBank报道序列一致。为获得CMV强启动子,将该基因片段用BamHⅠ、HindⅢ双酶切后,连入pEGFP-N3质粒中,采用脂质体2000转染NIH 3T3真核细胞,经荧光显微镜观察,在转染后24 h有t-PA-EGFP蛋白表达,产生较强的绿色荧光,证实载体构建成功,为下一步构建慢病毒载体奠定基础。
     采用已构建的pEGFP-N3-t-PA质粒,经PCR克隆获得CMV-t-PA片段。应用基因重组技术,双酶切pLenti质粒和目的CMV-t-PA片段后进行连接,构建pLenti-CMV-t-PA慢病毒质粒。同时提取pLenti-CMV-t-PA质粒和其他三个包装质粒,并测定其浓度,使用磷酸钙共沉淀法将其转染293T细胞,在细胞中生产慢病毒颗粒,取上清用聚乙二醇均相沉淀法浓缩病毒。通过观察病毒感染293T细胞后细胞表达EGFP阳性克隆数,计算得知病毒滴度均在1.5×107 TU/mL左右。将纯化后的病毒感染293T细胞并传代,经荧光显微镜观察有绿色荧光,同时用t-PA基因特异性抗体经Western blot检测细胞中有t-PA蛋白表达,且分子量为35.93kDa符合预测的蛋白大小,未感染病毒的细胞组无表达。
     综上所述,利用RT-PCR方法克隆得到t-PA酶活性区域(K2区和P区) cDNA,构建的重组真核表达质粒能在特定细胞中表达外源基因。随后进一步制备的慢病毒载体经过病毒包装系统,成功包装出病毒颗粒,经GFP荧光法检测其具有较高的病毒滴度。将纯化的病毒颗粒感染细胞后,通过RNA水平和特异性抗体的Western blot检测,证实目的基因插入到染色体上,并随细胞传代而转录表达,说明慢病毒载体及病毒颗粒制备成功。这为研制转基因高等模式动物的建立提供了物质基础。
Tissue-type plasminogen activator(t-PA) is a key enzyme in fibrinolysis system, the physiological role of which is to convert zymogen plasminogen into an active form of serine proteinase plasmin,which then initiates or accelerates the process of fibrinolysis and degrades the fibrin network of thrombi and blood clots, is the medicine for the therapy of thrombotic diseases. t-PA is widely distributed in the normal tissue. With the development of science technology, the manufacture of t-PA goes through many stages of development which included the original tissue extracting, prokaryotic expression, eukaryotic expression and animal mammary gland bioreactor expression. At present, although the manufacture of t-PA by animal mammary gland bioreactor expression has achieved industrialization, there were certain defect, for example the problem of the low rate of integration, transgenic animal genetic instability, genetic instability of transgenic animal, growth cycle length of transgenic animal and so on.
     Now optimal means for transgenic are the usage of virus vectors. As one of them, lentivirus provides effective means for expression of exogenous genes in mammalian cells, which had proved efficient and achieced stable long-term expression of the transgenes, so it was developed as an important transgenic vector for transgenic animals and gene therapy. In this research, we cloned the activity region of human t-PA cDNA, constructed t-PA lentiviral vector and produced high-titer lentivirus by four-plasmid system in 293T cells. These works provide the basis for generating t-PA transgenic animal.
     The t-PA activity regional cDNA was obtained from melanoma cell through RT-PCR and confirmed by DNA sequence analysis. In order to get strong promoter,we firstly construced pEGFP-N3-t-PA vectors. And then the t-PA lentiviral vectors were generated by subcloning recombinant technology and confirmed by restricition endonuclease analysis.
     In order to package virus, we extracted and purified recombinant plasmid and the else three packaging plasmids and measured the density of plasmids. The four-plasmid system was co-transformed into 293T cell for lentivirus production. The lentivirus in cell culture medium were collected, concentrated by PEG and quantified. The generated recombinant virus was used to infect 293T cell, detecting the number of positive clone of EGFP to calculate the virulence,which grossly was 1.5×107 TU/mL. The expression of t-PA in 293T cells was detected by RT- RCR and Western blot, and the molecular weight of the recombinated protein was 35.93kDa as our forecast.
     As a conclusion, the t-PA cDNA was successfully cloned using RT-PCR method from melanoma cell.The recombinant t-PA lentiviral vectors were successfully constructed by the method of molecular cloning and recombinant technics.The GFP protein was dectected by fluorescent microscope and t-PA protein was dectected by RT-PCR and Western blotting analysis in 293T cell.High-titer lentivirus was successfully produced and identified to be able to generate the transgenic animal.
引文
[1] Collen D, Topol E J, Tiefenbrunn A J, Gold H K, Weisfeldt M L, Sobel B E, et al. Coronary thrombolysis with recombinant human tissue-type plasminogen activator: a prospective, randomized, placebo-controlled trial [J]. Circulation, 1984, 70(6):1012-1017.
    [2] Hoylaerts M, Rijken D C, Lijnen H R, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin [J]. J Biol Chem, 1982, 257(6):2912-2919.
    [3] Dano K, Andreasen P A, Grondahl-Hansen J, Kristensen P, Nielsen L S, Skriver L. Plasminogen activators, tissue degradation, and cancer [J]. Adv Cancer Res, 1985, 44(139-266.
    [4] Rouf S A, Moo-Young M, Chisti Y. Tissue-type plasminogen activator: characteristics, applications and production technology [J]. Biotechnol Adv, 1996, 14(3):239-266.
    [5] Pennica D, Holmes W E, Kohr W J, Harkins R N, Vehar G A, Ward C A, et al. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli [J]. Nature, 1983, 301(5897):214-221.
    [6] Rijken D C, Collen D. Purification and characterization of the plasminogen activator secreted by human melanoma cells in culture [J]. J Biol Chem, 1981, 256(13):7035-7041.
    [7] Ahern T J, Morris G E, Barone K M, Horgan P G, Timony G A, Angus L B, et al. Site-directed mutagenesis in human tissue-plasminogen activator. Distinguishing sites in the amino-terminal region required for full fibrinolytic activity and rapid clearance from the circulation [J]. J Biol Chem, 1990, 265(10):5540-5545.
    [8] van Zonneveld A J, Veerman H, MacDonald M E, van Mourik J A, Pannekoek H. Structure and function of human tissue-type plasminogen activator (t-PA) [J]. J Cell Biochem, 1986, 32(3):169-178.
    [9] van Zonneveld A J, Veerman H, Pannekoek H. Autonomous functions of structural domains on human tissue-type plasminogen activator [J]. Proc Natl Acad Sci U S A, 1986, 83(13):4670-4674.
    [10] Verheijen J H, Caspers M P, Chang G T, de Munk G A, Pouwels P H, Enger-Valk B E. Involvement of finger domain and kringle 2 domain of tissue-type plasminogen activator in fibrin binding and stimulation of activity by fibrin [J]. Embo J, 1986, 5(13):3525-3530.
    [11] Tachias K, Madison E L. Variants of tissue-type plasminogen activator that display extraordinary resistance to inhibition by the serpin plasminogen activator inhibitor type 1 [J]. J Biol Chem, 1997, 272(23):14580-14585.
    [12] van Zonneveld A J, Veerman H, Pannekoek H. On the interaction of the finger and the kringle-2 domain of tissue-type plasminogen activator with fibrin. Inhibition of kringle-2 binding to fibrin by epsilon-amino caproic acid [J]. J Biol Chem, 1986, 261(30):14214-14218.
    [13] Stern A, Weidle U H. Kringle 1 domain of human tissue-type plasminogen activator is a functional module mediating fibrinogen-stimulated plasminogenolytic activity [J]. Gene, 1990, 87(2):305-308.
    [14] Meade H, Gates L, Lacy E, Lonberg N. Bovine alpha S1-casein gene sequences direct high level expression of active human urokinase in mouse milk [J]. Biotechnology (N Y) , 1990, 8(5):443-446.
    [15]沈友进,尹俊.组织型纤溶酶原激活剂研究新进展. [J].广东医药, 2008, 29(9):1581-1584.
    [16] Moon L D, Madani R, Vassalli J D, Bunge M B. Neuronal overexpression of tissue-type plasminogen activator does not enhance sensory axon regeneration or locomotor recovery following dorsalhemisection of adult mouse thoracic spinal cord [J]. J Neurosci Res, 2006;84(6):1245-1254.
    [17] Hennebert O, Laudenbach V, Laquerriere A, Verney C, Carmeliet P, Marret S, et al. Ontogenic study of the influence of tissue plasminogen activator (t-PA) in neonatal excitotoxic brain insult and the subsequent microglia/macrophage activation [J]. Neuroscience, 2005;130(3):697-712.
    [18] Gravanis I, Tsirka S E. Tissue plasminogen activator and glial function [J]. Glia, 2005;49(2):177-183.
    [19] Polavarapu R, Gongora M C, Yi H, Ranganthan S, Lawrence D A, Strickland D, et al. Tissue-type plasminogen activator-mediated shedding of astrocytic low-density lipoprotein receptor-related protein increases the permeability of the neurovascular unit [J]. Blood, 2007;109(8):3270-3278.
    [20] Hu K, Yang J, Tanaka S, Gonias S L, Mars W M, Liu Y. Tissue-type plasminogen activator acts as a cytokine that triggers intracellular signal transduction and induces matrix metalloproteinase-9 gene expression [J]. J Biol Chem, 2006;281(4):2120-2127.
    [21] Kumada M, Niwa M, Hara A, Matsuno H, Mori H, Ueshima S, et al. Tissue type plasminogen activator facilitates NMDA-receptor-mediated retinal apoptosis through an independent fibrinolytic cascade [J]. Invest Ophthalmol Vis Sci, 2005, 46(4):1504-1507.
    [22] Tsai S J. The possible role of tissue-type plasminogen activator and the plasminogen system in the pathogenesis of major depression [J]. Med Hypotheses, 2006, 66(2):319-322.
    [23] Renckens R, Roelofs J J, Florquin S, de Vos A F, Pater J M, Lijnen H R, et al. Endogenous tissue-type plasminogen activator is protective during Escherichia coli-induced abdominal sepsis in mice [J]. J Immunol, 2006, 177(2):1189-1196.
    [24] Renckens R, Roelofs J J, Bonta P I, Florquin S, de Vries C J, Levi M, et al. Plasminogen activator inhibitor type 1 is protective during severe Gram-negative pneumonia [J]. Blood, 2007, 109(4):1593-1601.
    [25] Gordon K, Lee E, Vitale J A, Smith A E, Westphal H, Hennighausen L. Production of human tissue plasminogen activator in transgenic mouse milk. 1987 [J]. Biotechnology, 1992, 24(425-428.
    [26] Ebert K M, DiTullio P, Barry C A, Schindler J E, Ayres S L, Smith T E, et al. Induction of human tissue plasminogen activator in the mammary gland of transgenic goats [J]. Biotechnology (N Y) , 1994, 12(7):699-702.
    [27] Ebert K M, Selgrath J P, DiTullio P, Denman J, Smith T E, Memon M A, et al. Transgenic production of a variant of human tissue-type plasminogen activator in goat milk: generation of transgenic goats and analysis of expression [J]. Biotechnology (N Y) , 1991, 9(9):835-838.
    [28] Liu J W, Pernod G, Dunoyer-Geindre S, Fish R J, Yang H, Bounameaux H, et al. Promoter dependence of transgene expression by lentivirus-transduced human blood-derived endothelial progenitor cells [J]. Stem Cells, 2006, 24(1):199-208.
    [29] Katzourakis A, Tristem M, Pybus O G, Gifford R J. Discovery and analysis of the first endogenous lentivirus [J]. Proc Natl Acad Sci U S A, 2007, 104(15):6261-6265.
    [30] Chai N, Chang H E, Nicolas E, Gudima S, Chang J, Taylor J. Assembly of hepatitis B virus envelope proteins onto a lentivirus pseudotype that infects primary human hepatocytes [J]. J Virol, 2007, 81(20):10897-10904.
    [31] Philippe S, Sarkis C, Barkats M, Mammeri H, Ladroue C, Petit C, et al. Lentiviral vectors with a defectiveintegrase allow efficient and sustained transgene expression in vitro and in vivo [J]. Proc Natl Acad Sci U S A, 2006, 103(47):17684-17689.
    [32] Solaiman F, Zink M A, Xu G, Grunkemeyer J, Cosgrove D, Saenz J, et al. Modular retro-vectors for transgenic and therapeutic use [J]. Mol Reprod Dev, 2000, 56(2 Suppl):309-315.
    [33] Frankel A D, Young J A. HIV-1: fifteen proteins and an RNA [J]. Annu Rev Biochem, 1998, 67(1-25.
    [34] Shin K J, Wall E A, Zavzavadjian J R, Santat L A, Liu J, Hwang J I, et al. A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression [J]. Proc Natl Acad Sci U S A, 2006, 103(37):13759-13764.
    [35] Kafri T, Blomer U, Peterson D A, Gage F H, Verma I M. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors [J]. Nat Genet, 1997, 17(3):314-317.
    [36] Han Y, Wind-Rotolo M, Yang H C, Siliciano J D, Siliciano R F. Experimental approaches to the study of HIV-1 latency [J]. Nat Rev Microbiol, 2007, 5(2):95-106.
    [37] Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage F H, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector [J]. Science, 1996, 272(5259):263-267.
    [38] Dull T, Zufferey R, Kelly M, Mandel R J, Nguyen M, Trono D, et al. A third-generation lentivirus vector with a conditional packaging system [J]. J Virol, 1998, 72(11):8463-8471.
    [39] Zufferey R, Dull T, Mandel R J, Bukovsky A, Quiroz D, Naldini L, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery [J]. J Virol, 1998, 72(12):9873-9880.
    [40] Miyoshi H, Blomer U, Takahashi M, Gage F H, Verma I M. Development of a self-inactivating lentivirus vector [J]. J Virol, 1998, 72(10):8150-8157.
    [41] Sikorski R, Peters R. Gene therapy. Treating with HIV [J]. Science, 1998, 282(5393):1438.
    [42] Kafri T, van Praag H, Gage F H, Verma I M. Lentiviral vectors: regulated gene expression [J]. Mol Ther, 2000, 1(6):516-521.
    [43] Semple-Rowland S L, Eccles K S, Humberstone E J. Targeted expression of two proteins in neural retina using self-inactivating, insulated lentiviral vectors carrying two internal independent promoters [J]. Mol Vis, 2007, 13(2001-2011.
    [44] Kotsopoulou E, Kim V N, Kingsman A J, Kingsman S M, Mitrophanous K A. A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene [J]. J Virol, 2000, 74(10):4839-4852.
    [45] Sachdeva G, D'Costa J, Cho J E, Kachapati K, Choudhry V, Arya S K. Chimeric HIV-1 and HIV-2 lentiviral vectors with added safety insurance [J]. J Med Virol, 2007, 79(2):118-126.
    [46] Follenzi A, Santambrogio L, Annoni A. Immune responses to lentiviral vectors [J]. Curr Gene Ther, 2007, 7(5):306-315.
    [47] Pfeifer A, Hofmann A. Lentiviral transgenesis [J]. Methods Mol Biol, 2009, 530(1-15.
    [48] Pfeifer A, Kessler T, Yang M, Baranov E, Kootstra N, Cheresh D A, et al. Transduction of liver cells by lentiviral vectors: analysis in living animals by fluorescence imaging [J]. Mol Ther, 2001, 3(3):319-322.
    [49] Lois C, Hong E J, Pease S, Brown E J, Baltimore D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors [J]. Science, 2002, 295(5556):868-872.
    [50] Hofmann A, Kessler B, Ewerling S, Kabermann A, Brem G, Wolf E, et al. Epigenetic regulation oflentiviral transgene vectors in a large animal model [J]. Mol Ther, 2006, 13(1):59-66.
    [51] Hofmann A, Zakhartchenko V, Weppert M, Sebald H, Wenigerkind H, Brem G, et al. Generation of transgenic cattle by lentiviral gene transfer into oocytes [J]. Biol Reprod, 2004, 71(2):405-409.
    [52] McGrew M J, Sherman A, Ellard F M, Lillico S G, Gilhooley H J, Kingsman A J, et al. Efficient production of germline transgenic chickens using lentiviral vectors [J]. EMBO Rep, 2004, 5(7):728-733.
    [53] Wolfgang M J, Eisele S G, Browne M A, Schotzko M L, Garthwaite M A, Durning M, et al. Rhesus monkey placental transgene expression after lentiviral gene transfer into preimplantation embryos [J]. Proc Natl Acad Sci U S A, 2001, 98(19):10728-10732.
    [54] Ryu B Y, Orwig K E, Oatley J M, Lin C C, Chang L J, Avarbock M R, et al. Efficient generation of transgenic rats through the male germline using lentiviral transduction and transplantation of spermatogonial stem cells [J]. J Androl, 2007, 28(2):353-360.
    [55] Hofmann A, Wenzel D, Becher U M, Freitag D F, Klein A M, Eberbeck D, et al. Combined targeting of lentiviral vectors and positioning of transduced cells by magnetic nanoparticles [J]. Proc Natl Acad Sci U S A, 2009, 106(1):44-49.
    [56] Gerolami R, Uch R, Faivre J, Garcia S, Hardwigsen J, Cardoso J, et al. Herpes simplex virus thymidine kinase-mediated suicide gene therapy for hepatocellular carcinoma using HIV-1-derived lentiviral vectors [J]. J Hepatol, 2004, 40(2):291-297.
    [57] Yu D, Jia W W, Gleave M E, Nelson C C, Rennie P S. Prostate-tumor targeting of gene expression by lentiviral vectors containing elements of the probasin promoter [J]. Prostate, 2004, 59(4):370-382.
    [58] Haas D L, Case S S, Crooks G M, Kohn D B. Critical factors influencing stable transduction of human CD34(+) cells with HIV-1-derived lentiviral vectors [J]. Mol Ther, 2000, 2(1):71-80.
    [59] Lo Bianco C, Schneider B L, Bauer M, Sajadi A, Brice A, Iwatsubo T, et al. Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson's disease [J]. Proc Natl Acad Sci U S A, 2004, 101(50):17510-17515.
    [60] Banerjea A, Li M J, Bauer G, Remling L, Lee N S, Rossi J, et al. Inhibition of HIV-1 by lentiviral vector-transduced siRNAs in T lymphocytes differentiated in SCID-hu mice and CD34+ progenitor cell-derived macrophages [J]. Mol Ther, 2003, 8(1):62-71.
    [61] Li M J, Bauer G, Michienzi A, Yee J K, Lee N S, Kim J, et al. Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs [J]. Mol Ther, 2003, 8(2):196-206.
    [62] Yoshimitsu M, Sato T, Tao K, Walia J S, Rasaiah V I, Sleep G T, et al. Bioluminescent imaging of a marking transgene and correction of Fabry mice by neonatal injection of recombinant lentiviral vectors [J]. Proc Natl Acad Sci U S A,2004, 101(48):16909-16914.
    [63] Stripecke R, Koya R C, Ta H Q, Kasahara N, Levine A M. The use of lentiviral vectors in gene therapy of leukemia: combinatorial gene delivery of immunomodulators into leukemia cells by state-of-the-art vectors [J]. Blood Cells Mol Dis, 2003, 31(1):28-37.
    [64] Coumoul X, Shukla V, Li C, Wang R H, Deng C X. Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference [J]. Nucleic Acids Res, 2005, 33(11):e102.
    [65] Mario Stevenson. Dissecting HIV-1 through RNA interference [J]. Nature Reviews Immunology, 2003, 3(1):851.
    [66] Katayama K, Wada K, Miyoshi H, Ohashi K, Tachibana M, Furuki R, et al. RNA interfering approach for clarifying the PPARgamma pathway using lentiviral vector expressing short hairpin RNA [J]. FEBS Lett, 2004, 560(1-3):178-182.
    [67] Golding M C, Long C R, Carmell M A, Hannon G J, Westhusin M E. Suppression of prion protein in livestock by RNA interference [J]. Proc Natl Acad Sci U S A, 2006, 103(14):5285-5290.
    [68] Berns K, Hijmans E M, Mullenders J, Brummelkamp T R, Velds A, Heimerikx M, et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway [J]. Nature, 2004, 428(6981):431-437.
    [69]黄培堂等译([美]萨姆布鲁克等著).分子克隆实验指南[M].北京:科学出版社, 2002, 96-99.
    [70] Cormack B P, Valdivia R H, Falkow S. FACS-optimized mutants of the green fluorescent protein (GFP) [J]. Gene, 1996, 173(1 Spec No):33-38.
    [71] Chalfie M, Tu Y, Euskirchen G, Ward W W, Prasher D C. Green fluorescent protein as a marker for gene expression [J]. Science, 1994, 263(5148):802-805.
    [72]黄培堂等译([美]萨姆布鲁克等著).分子克隆实验指南[M].北京:科学出版社, 2002, 1284-1285.
    [73]尹春光,杜立新.慢病毒载体构建策略及生物安全性研究进展. [J].动物医学进展, 2008, 29(2):72-75.
    [74] Xu K, Ma H, McCown T J, Verma I M, Kafri T. Generation of a stable cell line producing high-titer self-inactivating lentiviral vectors [J]. Mol Ther, 2001,3(1):97-104.
    [75] Munger K, Scheffner M, Huibregtse J M, Howley P M. Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene products [J]. Cancer Surv, 1992, 12(1):197-217.
    [76] Xu L, Daly T, Gao C, Flotte T R, Song S, Byrne B J, et al. CMV-beta-actin promoter directs higher expression from an adeno-associated viral vector in the liver than the cytomegalovirus or elongation factor 1 alpha promoter and results in therapeutic levels of human factor X in mice [J]. Hum Gene Ther, 2001, 12(5):563-573.
    [77] Loeb J E, Cordier W S, Harris M E, Weitzman M D, Hope T J. Enhanced expression of transgenes from adeno-associated virus vectors with the woodchuck hepatitis virus posttranscriptional regulatory element: implications for gene therapy [J]. Hum Gene Ther, 1999, 10(14):2295-2305.
    [78] Moroz M A, Serganova I, Zanzonico P, Ageyeva L, Beresten T, Dyomina E, et al. Imaging hNET reporter gene expression with 124I-MIBG [J]. J Nucl Med, 2007, 48(5):827-836.
    [79] Nasiell K, Roger V, Nasiell M. Behavior of mild cervical dysplasia during long-term follow-up [J]. Obstet Gynecol, 1986, 67(5):665-669.
    [80] Lois C, Refaeli Y, Qin X F, Van Parijs L. Retroviruses as tools to study the immune system [J]. Curr Opin Immunol, 2001, 13(4):496-504.
    [81] Yamada K, McCarty D M, Madden V J, Walsh C E. Lentivirus vector purification using anion exchange HPLC leads to improved gene transfer [J]. Biotechniques, 2003, 34(5):1074-1078, 1080.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700