用户名: 密码: 验证码:
随机振动下均质土坡稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中最常见且破坏性最强的随机振动是地震。我国是多地震国家之一,发生在我国的大地震具有强度大、频率高、震源浅的特点,因而引起的滑坡等灾害也是严重的。目前振动诱发边坡灾害方面的研究大多局限于事后的调查分析,由于岩土介质本身的复杂性、边坡工程的开放性以及影响边坡变形与破坏因素的多样性,导致了随机振动下边坡稳定的研究存在着很多的问题。本文以地震作用下均质土坡的稳定性为研究对象,对随机振动下均质土坡的稳定性展开研究。
     振动系统是指反映因果关系的装置或运算,分为时不变系统(常参数系统)和时变系统(变参数系统)。随机振动指的是不能用确定性的函数描述的运动规律,土层地震响应就是一种典型的随机振动过程,运动过程不可预测,在相同条件下也不重复,具有明确的随机性。随机过程通常是用n维概率分布函数F(X_1,t_1;…,X_n,t_n)或n维概率密度函数f(X_1,t_1;…,X_n,t_n)来描述,随机振动系统动态特征描述方法有脉冲响应法、频率响应法。多自由度系统随机响应几乎都是连续的、非线性的,通常采用离散化模型和近似方法进行处理和求解。
     均质土坡变形与破坏的根本原因在于土体内的剪应力大于其抗剪强度。边坡土体在振动荷载作用下发生振动时,动应力~应变关系表现出非线性、滞后性及变形积累等三种特征,土的动剪切模量G随着剪应变的增加而减少,与平均有效应力σ_0的幂函数成线性关系;其阻尼比都随着剪应变的增加而增加。
     边坡土体的变变形为三个阶段:弹性状态;弹塑性阶段;蠕变阶段,平行于边坡土的粘—塑流是边坡变形的另一种形式。边坡土体对振动的反应分析非常复杂,常用的分析方法有一维振动反应分析法和有限元法。
     从边坡地震破坏的范围、危害程度及工程意义上看,最小诱发滑坡的地震震级为M_L=4.5~4.7,引发边坡崩滑的最小地震烈度为Ⅵ度;地震诱发滑坡区域面积S(km~2)与震级M_W见有如下关系:logS=M_W-3.46(±0.4);滑坡总体积V(m~3)与震级M_W之间有如下关系:logV=1.44(±0.21)M_W-2.34(±1.5);滑坡剥蚀量随震级的增加而加大。
     地震诱发滑坡受区域发震构造控制,主要沿地震断层破裂方向分布。滑坡轴向受地形控制,沿山坡临空方向的滑动。
     通过对簸箕山滑坡场地左侧均质山坡的计算发现:土层的PGA随土层深度增加急剧减小,并趋于一常数,在深度10m的范围变化幅度最大;土体在低强度振动下,可恢复弹性变形成分多;滑坡体愈薄,地面PGA愈大,基本上为线性关系。在振动作用下,该均质山坡正向位移量为0.00~470.86cm,负向位移量为0.00~118.24 cm,未来50年内的破坏概率为3.8%。
The most common and destructive natural random vibration is earthquake. China is one of country that earthquakes often take place. The earthquakes happened in China have great intensity, frequency and sallow earthquake focus. So landslides and other geology disasters Caused by them are also serious. At present, the study on vibration-induced slope mostly focuses on the post-survey analysis. Because Rock and soil are complexity, the slope is open and the affect factors of slope deformation and failure are diversity, the slope stability impacted by random vibration has many problems. This paper study the slope stability impacted by earthquake to study the slope stability impacted by random vibration.
     Vibration systems refer to the installation or operation that reflect the relationship between reasons and results, divided into time-invariant systems (constant parameter systems) and time-varying systems (change parameter systems). Random vibration is movement that can not used the function to describe. Soil seismic response is a typical random vibration, It's process of movement is unpredicted, it's movement will not repeat under the same conditions, has clear randomness. Random process usually uses n-dimensional probability distribution function F(x_1,t_1; ..., x_n,t_n) or n-dimensional probability density function f(x_1,t_1; ... , x_n,t_n)to describe. The method to describe random vibration system is impulse response method and frequency response method. The n-freedom random vibration system almost is continuous and non-linear, which used discrete model and approximate method to handle and solve.
     The fundamental reason of homogenous, soil-slope deformation and damage is the shear stress greater in slop than the shear strength. When slope soil vibration impact by vibration load, the relationship between siol dynamic stress and soil dynamic strain is nonlinearity, hysteresis and deformation accumulation. Soil dynamic shear modulus G decrease when shear strain increase. The relationship between soil dynamic shear modulus G and the power function of average effective stressσ_0 is linear. Soil damping Ratio increase when shear strain increase.
     The slop soil deformation has three stages: elastic state, slasto-plastic stage, creep stage. Soil visco-plastic deformation that parallel to the slope is another slope deformation form. Slope analysis of soil response to vibration is very complex, the common analytical method is one-dimensional vibration analysis and and finite element method.
     The minimum earthquake magnitude to induced landslide is M_L=4.5~4.7 according to the scope of slope damage induced by earthquake, dangerous degree and engineering significance. The smallest degree of seismic intensity induce to landslide isⅥ. The relationship between the earthquake-induced landslide area S ( km~2) and magnitude M_W is logS=M_W-3.46(±0.4). The relationship between total volume of landslide and magnitude M_W is logV=1.44(±0.21)M_W-2.34(±1.5). Landslide amount of erosion increase when magnitude is increase.
     Earthquake-induced landslide controled by regional tectonic that lead to earthquake, along the fault rupture direction. The direction of landslide axial controlled by topography, the direction of landslide is sliding attack. The result of the homogenous soil hillside left to Boqishan landslide shows that: soil PGA decrease when slop depth increase, and tends to a constant, the changes is largest in 10m depth. The soil restore elastic deformation is more when soil impacted by low-intensity vibration. Ground PGA is larger when landslide is thin, the relationship is linear.
     The positive displacement of the homogeneous hillside is 0.00~470.86cm, The minus displacement is 0.00~118.24 cm when the homogeneous hillside impacted by random vibration. The damage probability is 3.8% during next 50 years.
引文
[1]陈顒,刘杰,,陈棋福等 地震危险性分析和震害预测.北京:地震出版社,1999
    [2]冯学才,郭安宁.我国地震滑坡的一般特征.滑坡文集(兰州滑坡会议论文选集),北京:中国铁道出版社,1988
    [3]顾攻叙,林庭煌,时振梁等 中国地震目录(公元前1831年-1979年).北京:地震出版社,1983
    [4]国家地震局.中国地震烈度区划工作报告.北京:地震出版社,1981
    [5]国家地震局.中国地震年鉴(1949-1992).北京:地震出版社,1994
    [6]郭增建,马宗晋.中国特大地震(一).北京:地震出版社,1986
    [7]胡广韬等.滑坡动力学.北京:地质出版社,1995
    [8]胡广韬,杨文远.工程地质学.北京:地质出版社,1990
    [9]胡聿贤.地震工程学.北京:地震出版社,1988
    [10]蒋溥,戴丽思.工程地震学概论,北京:地震出版社,1993
    [11]刘玉海,程志新,倪万魁.地震工程地质学.北京:地震出版社,1998
    [12]Cornell,C.A.Engineering seismic risk analysis,BSSA,1968,Vol.54,No.5
    [13]Cornell,C.A.and Vanmarke,H.The major influences on seismic risk,Proc.4-rd WCEE,Santiago,Chile,1969,A-1,pp69-93
    [14]Wasowski J.and Del Gaudio V.Evaluating seismically induced mass movement hazard in Caramanico Terme(Italy),Engineering Geology,Special Issue,2000,Vol.58 No.3-4
    [15]胡聿贤主编.地震危险性分析中的综合概率法.北京:地震出版社,1990
    [16]胡聿贤,时振梁.重要工程中的地震问题.北京:地震出版社,1988
    [17]黄昌乾,丁恩保.边坡工程常用稳定性分析方法.水电站设计,1999,15(1):32-36
    [18]李功伯,谢建清.滑坡稳定性分析与工程治理,北京:地震出版社,1997
    [19]陈惠发.极限分析与土体塑性.北京:人民交通出版社,1995
    [20]赵彭年.松散介质力学.北京:地震出版社,1995
    [21]殷坤龙,韩再生,李志中.国际滑坡研究的新进展.水文地质工程地质,2000,5:
    [22]Yang H.Huang,包承纲译.土坡稳定分析.北京:清华大学出版社,1988
    [23]刘传正.论滑坡稳定性评价的几个关键问题.中国地质灾害与防治学报, 1996,7(3):53-57
    [24]黄润秋,张倬元,王士天.高边坡稳定性的系统工程地质研究.成都:成都科技大学出版社,1991
    [25]Davis S.N.and Karzulovic K.Landslides at Lake Rinihue,Chile,Bull.Seismol.Soc.America,1963,Vol.53,No.6
    [26]Esposito E.,Porfido S.,Simonelli A.L.,Mastrolorenzo G.and Iaccarino G.Landslides and other surface effects induced by the 1997 Umbria-Marche seismic sequence,Engineering Geology,Special Issue,2000,Vol.58 No.3-4
    [27]黄雅虹.地震作用下黄土斜坡的稳定性分析预测.西北地震学报,1998,20(3):21-25
    [28]Garwood N.C.,Janos D.P.and Brokaw N.Earthquake-cause landslides:a major disturbance to topic forests,Science,1979,Vol.205
    [29]Jibson R.W.,Harp E.L.and Michael J.A.A method for producing digital probabilistic seismic landslide hazard maps,Engineering Geology,Special Issue,2000,Vol.58 No.3-4
    [30]黄运飞,冯静.计算工程地质学.北京:兵器工业出版社,1992
    [31]辛鸿博,王余庆.岩土边坡地震崩滑及其初判准则.岩土工程学报,1999,21(5):536-541
    [32]Fredlund D J,Krahn J.Comparison of Slope Stability Methods of Analysis.Canadian Geotechnical J,1973,14(3):429-435
    [33]王来贵,章梦涛,王泳嘉等 基岩振动干扰下的动力滑坡机制研究.工程地质学报,1997,5(2):113-118
    [34]张建永.滑坡研究现状综述.中国岩溶,1999,18(3):363-366
    [35]张振中主编.黄土地震灾害预测.北京:地震出版社,1999
    [36]祝玉学.边坡可靠性分析,北京:冶金工业出版社,1993
    [37]Kanamon,Hiroo.The energy release in great earthquakes:Journal of Geophysical Research,1977,Vol.82,No.20,pp.2981-2987
    [38]Keefer D.V.Landslides caused by earthquakes,Geological Society of America Bulletin,1984,vol.95,No.4,pp.406-421
    [39]Keefer D.V.Statistical analysis of an earthquake-induced landslide distribution -the 1989 Loma Prieta,California event,Engineering Geology,Special Issue,2000,Vol.58 No.3-4
    [40]Keefer D.V.and Wilson R.C.Predicting earthquake-induced landslides,with emphasis on arid semi-arid environments,in Sadler P.M.and Morton D.M.,eds., Landslides in a semi-arid environment with emphasis on the inland Valleys of Southern California,Publications of the Inland Geological Society,1989,vol.2,pp.118-149
    [41]Romeo R.Seismically induced landslide displacements:a predictive model,Engineering Geology,Special Issue,2000,Vol.58 No.3-4
    [42]庄表中.随机振动的理论及实例分析.北京:地震出版社,1985
    [43]王彬主编.振动分析及应用.北京:科技出版社,1992
    [44]王兰民,张振中,王峻等.随机地震荷载作用下黄土动强度的试验方法.西北地震学报,1991,13(3):231-235
    [45]王兰民,张振中,王峻等.随机地震荷载作用下黄土动本构关系的试验研究.西北地震学报,1992,14(4):267-271
    [46]谢定义.土动力学.西安:西安交通大学出版社,1988
    [47]周健.土动力学理论与计算.北京:科技出版社,2001
    [48]刘汉龙,余湘娟.土动力学与岩土地震工程研究进展.河海大学学报,1999,27(1):33-36
    [49]段汝文.兰州黄土动力特性的实验研究.西北地震学报,1979,1(2):45-48
    [50]段汝文,张振中,李兰等 黄土动力特性的进一步实验,西北地震学报,1990,12(3):11-15
    [51]王志良,王余庆,韩清宇.不规则循环剪切荷载作用下土的粘弹性模型.岩土工程学报,1980,2(3):273-276
    [52]郑大同,王惠昌.循环荷载作用下土的非线性应力应变模型.岩土工程学报,1985,5(1):31-36
    [53]王庚荪.边坡的渐进破坏及稳定性分析.岩石力学与工程学报,2000,1:47-51
    [54]吴世明,张显杰,陈龙珠.土坡稳定的非线性极限分析.岩土工程学报,1987,6:673-677
    [55]C.C.维亚洛夫.土力学的流变原理.北京:科学出版社,1987
    [56]毛彦龙,胡广韬,赵法锁等 地震动触发滑坡体滑动的机理.西安工程学院学报,1998,20(4):169-173
    [57]孙崇绍,蔡红卫.我国历史地震时滑坡崩塌的发育及分布特征.自然灾害学报,1997,6(1):34-38
    [58]左发源,齐有科.我国黄土高原西部区域性滑坡的特征.滑坡文集.北京:中国铁道出版社,1988
    [59]唐川,黄楚兴,万晔.云南丽江大地震及其诱发的崩塌滑坡灾害特征.自然灾害学报,1997,6(3):173-177
    [60]张克绪.饱和非粘性土坝坡地震稳定性分析.岩土工程学报,1980,2(3):332-336
    [61]周本刚,王裕明.中国西南地区地震滑坡的基本特征.西北地震学报,1994,16(1):33-37
    [62]南金生,刘松玉,谢瑞征.南京地区滑坡与崩塌特征分析及地震可能引起的崩塌危险区预测,地震学刊,1998,2:91-94
    [63]罗文强,晏同珍.斜坡稳定系数的概率分析.地球科学,1996,21(6):131-135
    [64]罗文强,张倬元,黄润秋,边坡系统稳定性的可靠性研究,地质科技情报,1999,Vol.18.NO.2
    [65]马尔曼,宝鸡市斗鸡台滑坡区滑坡地震稳定性计算与分析,高原地震,1994,Vol.6.NO.3
    [66]姚耀武,陈东伟.土坡稳定可靠度分析.岩土工程学报,1994,2:296-301

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700