用户名: 密码: 验证码:
岩体三维裂隙网络非稳定渗流场与温度场耦合分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,在岩土工程中,渗流-应力-温度-溶质的耦合分析已成为整个工程界非常关注的问题之一,而其中的渗流-温度耦合分析正是非常重要的一项研究内容。它是影响工程正常运转与工程安全性的重要因素,被广泛应用于水利水电工程、岩土工程、土木建筑工程、水资源开发与利用、环境工程、水文地质、工程地质、石油开发、煤炭天然气开发、地热开发、地震预报与控制、地下工程以及核废料处理等领域。
     对于裂隙岩体而言,目前广泛采用的是等效连续介质模型,因为其有成熟的理论基础和计算方法;然而对存在稀疏裂隙或大的断层的岩体来说,采用非连续介质模型(裂隙网络模型)进行渗流温度耦合分析在理论上应是一种更加符合实际情况的方法。但是,与连续介质模型相比,采用离散裂隙网络模型对裂隙岩体进行渗流温度耦合分析研究才刚刚开始,将成为裂隙岩体研究的一个崭新的组成部分。
     针对裂隙岩体本身的特殊性,假设岩块本身不透水,水流只存在于由裂隙面组成的裂隙网络中,因此将基于裂隙网络的渗流-温度耦合分析看作是存在于裂隙中的渗流场、水流温度场和存在于岩体中的岩块温度场三者之间的耦合分析。在此基础之上,主要完成了以下几方面的工作:
     1.在了解当前裂隙网络渗流理论和温度场基本理论的基础之上,首先从渗流-温度相互作用的二维数值模拟出发,分析了连续介质中考虑渗流热学效应的大坝工程稳定温度场;分析了岩体裂隙网络考虑温度影响的稳定渗流场;分析了考虑裂隙水流影响的岩体裂隙网络非稳定温度场。通过定性定量地考虑渗流-温度之间的相互影响关系,为分析三维渗流温度的耦合机理、模型建立以及数值计算奠定了很好的基础。
     2.三维裂隙岩体渗流-温度耦合分析是本论文的核心部份,从分析三维裂隙岩体中渗流场、水流温度场和岩块温度场之间的相互影响作用机理出发,推导了三者的耦合方程,并从考虑耦合作用的单场数值计算开始,进而到两场之间的耦合迭代,最终实现了三场的耦合数值计算,达到了预期的目标。
     3.基于一定的基本理论和数值计算方法的基础之上,最终实现了3-D CoupledSeepage-Temperature Program in Fractured Network程序的开发。
     4.将前面理论、模型和数值计算方法应用到某实际工程中验证自主开发3-D CoupledSeepage-Temperature Program in Fractured Network程序的正确性,对该工程的坝基进行了裂隙网络模拟,然后对连通区域组成的裂隙网络和岩块一起进行了渗流-温度的耦合分析。就相同的边界条件和初始条件,对上游水头瞬降、上游水头不发生变化、上游水头瞬升和上游水头缓降四种工况进行了对比分析。结果分析表明,对于坝基而言,边界水头变化与不变化,水头变化的过程是否相同,从而得到的渗流场水头、水流温度值和岩块温度值都有一定的区别。因此,采用裂隙网络方法考虑渗流场、水流温度场和岩块温度场的耦合作用有一定的必要性,为工程的设计施工提供一定的参考依据。
At present,coupling analysis about seepage-stress-temperature-solute is one very important problem for all engineering field in rock-soil project.Coupling analysis about seepage-temperature is one important research contents in them.It is one important factor about normal operation and security of project.It is applied in the following domain:Hydraulic and Hydro-Power Engineering,geotechnical engineering,civil engineering and building construction,development and application of Water Resources,environmental engineering, hydrogeology,engineering geology,oil development,coal and natural gas development, geothermal development,prediction and control in earthquake,underground engineering and nuclear waste disposal etc.
     In terms of fractured rock mass,equivalent continuum model is widely adopted at present because of its mature theoretical basis and calculation method.However,discontinuous model (fracture network model)used to seepage-temperature coupling analysis is method of accordance with practical case in theory for rock mass having sparse cranny or big faults. Comparing with continuum model,its development is just starting.It will bca brand-new component part in fractured rock mass domain.
     Aiming at particularity of fractured rock mass,it considers that rock mass is impervious itself and water flows in fracture network structured by fracture surface.This paper thinks that coupling analysis of seepage-temperature in fracture network is coupling analysis of seepage field,flow temperature field in fracture surface and rock block temperature field in rock mass. Based these foundations,the following works has finished:
     1.Based seepage theory of fracture network and temperature field at present,starting from two-dimensional numerical simulation of seepage-temperature interaction,it has finished the following numerical calculation:steady temperature field calculation of dam engineering considering thermal effect of seepage in continuous medium;steady seepage field calculation considering temperature effect in fracture network;unsteady temperature field calculation considering fissure flow in fracture network.All these qualitative and quantitative analysis between seepage and temperature lays a foundation for mechanism research,model building and numerical calculation of there-dimensional coupled seepage-temperature.
     2.Because there-dimensional coupling analysis of seepage-temperature in fractured rock mass is core part of the paper,starting from analyzing action mechanism of 3-D seepage field, flow temperature field and rock block field in fractured rock mass,their coupling equation has been deduced.Firstly,numerical calculation of single field considering coupling effect has been researched,secondly,coupling iteration between two fields has been done;finally,coupling numerical calculation among three fields has been achieved.It comes true our object.
     3.Based on some basic theory and numerical method,the program named "3-D Coupled Seepage-Temperature Program in Fractured Network" is developed finally.
     3.The former theory,model and numerical calculation method is applied to one actual project to verify correctness of self-developed program called "3-D Coupled Seepage-Temperature Program in Fractured Network".Firstly,fracture network of dam foundation has been simulated;secondly,it has done coupling analysis between seepage and temperature fields for fracture network structured by connected domain and rock block.In terms of the same boundary condition and initial condition,it does comparative analysis for 4 project cases:sharp drop of upstream water head;constant upstream water head;sharp rise of upstream water head;slow drop of upstream water head.It has been shown that there are certain difference among water head,flow temperature and rock block temperature from coupling analysis for change,changeless and change process of water head in dam foundation.Thereby, using fracture network method analyzing coupled seepage-flow temperature-rock block temperature fields is necessary and will provide some reference basis to design and construction of engineering.
引文
[1]柴军瑞.大坝工程渗流力学[M].拉萨:西藏人民出版社,2001:189-193.
    [2]贺玉龙,杨立中,赵文.岩体温度对地下水性质的影响[J].辽宁工程技术大学学报,2002,21(5):584-586.
    [3]周志芳,王锦国.裂隙介质水动力学[M].北京:中国水利水电出版社,2004:223-237.
    [4]仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社,1995:77-83.
    [5]Barenblatt G I.Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[J].Journal of Applied Mathematical Mechanics,1960,24(5):1286-1303.
    [6]Warren J E,Root P J.The behavior of naturally fractured reservoirs[J].J See Petrol Eng,1963,25(3):245-255.
    [7]Zimmerman R W,Chen G,Hadgu Tekluetal.A numerical dual-porosity model with a semianalytical treatment of fracture/matrix flow[J].Water Resources Research,1993,29(7):2127-2137.
    [8]毛昶熙.渗流分析与控制(第二版)[M].北京:中国水利水电出版社,2003:306-318.
    [9]Snow D T.Anisotropic permeability of fractured media[J].Water Resources Research,1969,(6):1273-1289.
    [10]Long J C S,Remer J S,Wilson C R,Witherspoon P A.Porous media equivalents for networks of discontinuous fractures[J].Water Resources Research,1982,18(3):645-658.
    [11]Long J C S,Witherspoon P A.The relationship of the degree of interconnection to permeability in fractured networks[J].Journal of Geophysical Research,1985,90(134):3087-3098.
    [12]Oda M.An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock m asses[J].Water Resources Research,1986,22(13):1845-1856.
    [13]张有天,张武功.裂隙岩石渗透特性渗流数学模型及系数量测[J].岩石力学,1982,(8):41-52.
    [14]田开铭,万力.各向异性裂隙介质渗透性的研究与评价[M].北京:学苑出版社,1989:11-17.
    [15]毛昶熙,陈平,李定方等.岩石裂隙渗流的计算与试验[J].水利水运工程学报,1984,(3):29-37.
    [16]Wittke W.Rock Mechanics-Theory and Applications with Case Histories[M].Berlin,1990:8-11.
    [17]米勒L.(路易斯C.)著,李世平,冯震海译.岩石力学(岩体水力学)[M].北京:煤炭工业出版社,1981:51-56.
    [18]毛昶熙,段祥宝,李定方.网络模型程序化及其应用[J].水利水运科学研究,1994,(3):197-209.
    [19]Wilson C R.Witherspoon P A.Steady state flow in rigid networks of fractures[J].Water Resources Research,1974,10(2):328-335.
    [20]Nordqvist A W,T sang Y W,Tsang C F.A variable aperture fracture network model for flow and transport in fractured rocks[J].Water Resources Research,1992,28(6):1703-1713.
    [21]Dershowitz W S.A new three dimensional model for flow in fractured rock[J].Int Assoc Hydrogeol,1985,25(17):441-448.
    [22]万力,李定方,李吉庆.三维裂隙网络的多边形单元渗流模型[J].水利水运工程学报.1993,(4) 347-353.
    [23]王君连.工程地下水计算[M].北京:中国水利水电出版社,2004:10-18.
    [24]张有天,王镭,陈平.边界元法及其在工程中的应用[M].北京:水利电力出版社,1989:11-17.
    [25]戴锅生.传热学(第二版)[M].北京:高等教育出版社,1999:8-9.
    [26]卓宁,孙家庆.工程对流换热[M].北京:机械工业出版社,1982:79-86.
    [27]J.A.亚当斯,D.F.罗杰斯著.章靖武,蒋章焰译.传热学计算机分析[M].北京:科学出版社,1982:95-99.
    [28]陶文铨,何雅玲.对流换热及其强化的理论与实验研究最新进展[M].北京:高等教育出版社,2005:34-41.
    [29]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999:101-110.
    [30]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988:105-115.
    [31]周志芳,顾长存.裂隙水研究进展[J].河海科技进展,1994,14(1):50-55.
    [32]董羽蕙,屈俊童.大体积混凝土温度场的仿真分析[J].昆明理工大学学报(理工版),2004,29(5):87-91.
    [33]杜延龄,许国安.渗流分析的有限元法和电网络法[M].北京:水利电力出版社,1992:89-110.
    [34]朱伯芳.有限单元法原理与应用(第二版)[M].北京:中国水利水电出版社,1998:270-287.
    [35]柴军瑞,韩群柱.岩体渗流场与温度场耦合的连续介质模型[J].地下水,1997,19(2):59-62.
    [36]王如宾.单裂隙岩体稳定温度场与渗流场耦合数学模型研究[J].灾害与防治工程,2006,60(1):65-70.
    [37]王如宾,柴军瑞.非连续裂隙岩体渗流场与温度场耦合分析[J].工程勘察,2006,(6):18-21.
    [38]王如宾.单裂隙水流稳定温度场初探[J].灾害与防治工程,2005,59(2):44-48.
    [39]LAI Yuan-ming,LIU Song-yu,WU Zi-wang,YU Wen-bing.Approximate analytical solution for temperature fields in cold regions circular tunnels[J].Cold Regions Science and Technology,2002,34(1):43-49.
    [40]BONACINA C,COMINI G,FASANO A,et al.Numerical solution of phase-change problems[J].Int J Heat Mass Transfer,1973,16(6):1852-1832.
    [41]COMINI G,GUIDICE S del,LEWIS R W,et al.Finite element solution of nonlinear heat conduction problems with special reference to phase change[J].Inter J for Numerical Methods in Engineering,1974,8(6):613-624.
    [42]BATHE K J,KHOSHGOFTAAR M R.Finite element free surface seepage analysis without mesh iteration[J].Inter J Numerical Analytical Methods in Geomechanics,1979,3(1):13-22.
    [43]ZHAO C B,VALLIAPPAN S.Transient infinite elements for seepage problems in infinite media[J].Inter J Numerical Analytical Methods in Geomechanics,1993,17(1):323-341.
    [44]LAI Y M,WU Z,ZHU Y,ZHU L.Nonlinear analysis for the coupled problem of temperature and seepage fields in cold regions tunnels[J].Cold Regions Science and Technology,1999,29(1):89-96.
    [45]LAI Y M,WU Z,ZHU Y,ZHU L.Nonlinear analysis for the coupled problem of temperature,seepage and stress fields in cold-region tunnels[J].Tunnelling and Underground Space Technology,1998,29(1):435-440.
    [46]张有天,陈平,王镭.有自由面渗流问题分析的初流量法[J].水利学报,1988,12(1):18-26.
    [47]张学富,喻文兵,刘志强.寒区隧道渗流场和温度场耦合问题的三维非线性分析[J].岩土工程学报,2006,28(9):1095-1100.
    [48]刘亚晨.核废料贮存裂隙岩体水热耦合迁移及其与应力的耦合分析[D].武汉:中国科学院武汉岩土力学研究所,2000:3-5.
    [49]黄运飞,冯静.计算工程地质学[M].北京:兵器工程出版社,1992:118-123.
    [50]Baecher G B,Lanney NA,Einstein H H.Statistical description of rock properties and sampling[A].In:Proceeding of the 18th US Symp.Rock Mechanics[C].Golden,Colorado:Johnson Pub.Co.,1977:1-8.
    [51]Long C S,Gilmour P,Witherspoon P.A model for steady fluid flow in random three dimensional networks of discchaped fractures[J].Water Resour Researeh,1985,21(1):1105-1115.
    [52]耿克勤,吴永平.拱坝和坝肩岩体的力学和渗流的耦合分析实例[J].岩石力学与工程学报,1997,16(2):125-131.
    [53]Romm E S.Flow Characteristics of Fractured Rocks[M].Moscow:Nedra,1966:101-103.
    [54]Lomize G M.Flow in Fractured Rocks[M].Moscow:Gesenergoizdat,1951:71-74.
    [55]王媛,速宝玉.单裂隙面渗流特性及等效水力隙宽[J].水科学进展.2002,13(1):61-68.
    [56]Moreno L Y,Tsang W.How and tracer transport in a single fracture stochastic model and its relation to some field observations[J].Water Resour,1988,24(12):2033 -2048.
    [57]柴军瑞.岩体裂隙网络非线性渗流分析[J].水动力学研究与进展A辑,2002,17(2):217-221.
    [58]Louis C.A study of groundwater flow in jonited rock and its influence on the stability of rock masses(Rock Mech.Res.Rep.10)[R].London:Imp.Coll.,1969:12-13.
    [59]王媛,速宝玉,徐志英.等效连续裂隙岩体渗流与应力全耦合分析[J].河海大学学报,1998,26(2):26-30.
    [60]Nootishad J,AyatollahiM S,Witherspoon PA.Finite element method for coupled stress and fluid flow analysis in fractured rock masses[J].Int.J.Rock Mech.Min.Sci.Geomech.Abstr.,1982,19(1):185-193.
    [61]Neuzil C E,Traey J V.Flow through fractures[J].Water Resour.Resear,1981,17(1):191-194.
    [62]Tsang Y W.The effect of tortuosity on fluidflow through a single fracture[J].Water Resour Resear.1984,20(9):1209-1215.
    [63]Dershowitz,W.S.,and C.Fidelibus.Derivation of equivalent pipe network analogues for three-dimensional discrete fracture networks by the boundary element method[J].Water Resour. Res.1999,35(9):2685-2691.
    [64]柴军瑞.混凝土坝渗流场与稳定温度场耦合分析的数学模型[J].水力发电学报,2000,(1):27-35.
    [65]许增光,李康宏,柴军瑞等.考虑渗流热学效应的大坝稳定温度场有限元数值分析[J].红水河,2006,25(2):112-115.
    [66]Herbert F.Wang,Mary P.Anderson著,赵君译,渗流数值模拟导论[M].大连:大连理工大学出版社,1988:115-118.
    [67]李康宏,柴军瑞.坝基渗流分析两种数值方法的比较[J].红水河,2003,22(4):14-17.
    [68]张有天.岩体水力学与工程[M].北京:中国水利水电出版社,2005:222-228.
    [69]吴持恭.水力学(上册)[M].北京:高等教育出版社,1982:229-238.
    [70]许增光,柴军瑞.考虑温度影响的岩体裂隙网络稳定渗流场数值分析[J].西安石油大学学报.2007,22(2):169-172.
    [71]柴军瑞,仵彦卿.岩体三维主干裂隙网络渗流分析[J].水动力学研究与进展A辑,2002,17(2):27-35.
    [72]井兰如,冯夏庭.放射性废物地质处置中主要岩石力学问题[J].岩石力学与工程学报,2006,25(4):833-841.
    [73]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,2004:226-238.
    [74]丁红瑞,王如宾.基于单裂隙岩体二维温度场数值模拟分析[J].灾害与防治工程,2005,59(2):17-22.
    [75]傅冰骏.21世纪我国岩石力学面临的机遇和挑战[J].岩土工程界,2004,3(4):9-12.
    [76]王芝银,李云鹏.西部岩土工程与岩土力学问题[J].长安大学学报(自然科学版),2003,23(1):11-14.
    [77]王芝银.岩土工程学科发展动向[J].西安矿业学院学报,1999,19(s1):1-4.
    [78]刘长吉,陈建生,白兰兰等.裂隙岩体地区导热—对流型温度场垂向渗透系数的计算及分布特征研究[J].岩石力学与工程学报,2007,26(4):780-785.
    [79]李毅.覆膜条件下土壤水、盐、热耦合迁移试验研究[博士学位论文][D].西安:西安理工大学,2006:89-91.
    [80]许增光,柴军瑞,程汉鼎.岩体裂隙网络渗流-温度耦合机理分析与模型建立[A],中国力学学会办公室,庆祝中国力学学会成立50周年大会暨中国力学学术大会'2007论文摘要集(下)[C].北京,2007:447.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700