用户名: 密码: 验证码:
添加镁锆砂及环保沥青对低碳镁碳砖性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着炉外精炼工艺的发展,低碳镁碳耐火材料成为镁碳耐火材料的研究热点。本论文综述了低碳镁碳耐火材料的发展概况及目前存在的主要问题,根据其所必须具备的强度、抗氧化性、抗侵蚀性、抗热震性等性能要求,在实验室条件下研究了镁砂临界粒度、镁砂颗粒级配、镁锆砂粒度及加入量、环保沥青加入量对低碳镁碳耐火材料结构与性能的影响。测定了不同温度处理后试样的体积密度、耐压强度等物理性能,以及试样的热膨胀率、抗氧化性能、抗热震性能、抗渣侵蚀性。通过X-射线衍射分析了试样的物相组成,用扫描电镜观察了试样的显微结构。得出的结论如下:
     1)在低碳镁碳耐火材料中,镁砂临界颗粒变小,试样的气孔率下降,气孔孔径变小,产生的热应力小,成型后试样体积密度、耐压强度增大,热膨胀率减小。此外,气孔孔径变小,氧气扩散速度降低,制品的抗氧化性也得到提高。
     2)在石墨含量不变的条件下,适当减少镁砂细粉含量,增大粗、中颗粒含量,可减少镁砂颗粒总的比表面积,使得基质中石墨分布集中,具有缓解热应力的作用,且细粉量少,可降低MgO与石墨反应的速度,提高制品的抗氧化性、抗侵蚀性。
     3)用颗粒及细粉两种粒度的镁锆砂替代镁砂添加到低碳镁碳耐火材料中,由于镁锆砂本身体积密度大、抗侵蚀性能好及氧化锆相变增韧的作用,可以明显增大制品体积密度,降低热膨胀率,提高抗热震性能及抗侵蚀性能。与未加镁锆砂的试样相比,当镁锆砂加入量为15%时,侵蚀层厚度降低38%,热膨胀率降低12.6%。
     4)添加环保沥青后,在试样烧成过程中,由于沥青高温流动性好,促进了金属Al氧化后的产物Al_2O_3与MgO的反应及AlON固溶体的形成,制品中有大量纳米级AlON、MgAl_2O_4的生成,提高了试样的致密度、常温耐压强度。试样热震实验后,未加沥青试样抗折强度保持率为67%,而加沥青试样抗折强度保持率最高达78%,抗热震性得到提高。此外,沥青高温炭化后与树脂碳形成镶嵌结构,提高了残碳率,也有利于试样抗侵蚀性及抗热震性的提高。
With the developing of external refining technology,, low carbon magnesia-carbon refractories became a research hotspot of the magnesia-carbon refractories. This work overviewed the development and the drawbacks of low carbon magnesia-carbon material, it requires champion strength, antioxidation, corrodibility resistance and thermal shock resistance and so on. According to the requirements above, this paper studied the effect of MgO particle size, MgO granularity, magnesia-zirconia powder size and content, pitch content on structure and conventional properties of low carbon magnesia-carbon refractories.
     After sintered for different experimental intentions, the bulk density, apparent porosity, cold crushing strength and high temperature bending strength of the specimens were determined, respectively. Besides properties above, antioxidation resistance, thermal expansion, thermal shock resistance and corrodibility resistance also determined, the phase composition and microstructure were observed by X-ray diffraction instrument, scanning electronic microscope, respectively. Then, conclusions are obtained as follows:
     1) MgO particle size plays an important role in improving the properties of low carbon MgO-C refractories. Reducing MgO granule size, the apparent porosity, pore size of sample and thermal stress became smaller, the bulk density, compressive strength improved, and the thermal expansion of specimens reduced. Besides, the pore size diminished, the speed of O2 diffusion slowed, and that can improve the oxidation resistance.
     2) Reduce magnesia power content and increase magnesia particle content, it can cause the low carbon magnesia-carbon refractories to have the graphite relative centralism phenomenon, and this can release thermal stress, and is propitious to enhance the materials’oxidation resistance and corrosion resistance.
     3) The influence of particle size and quantity of magnesia-zirconia powder on properties of low carbon magnesia-carbon refractories has been investigated. The results indicated that, because of the nature characters of magnesia-zirconia powder, such as, big bulk density, good corrosion resistance and phase transformation toughening of zirconia, both particle and powder can improve the physical properties, oxidation resistance, corrosion resistance and thermal shock resistance of low carbon magnesia-carbon materials. Compared with blank sample, when the magnesia-zirconia powder content is 15%, the thickness of corrosion layer reduced 38%, and the thermal expansion ratio reduced 12.6%.
     4) Pitch additive can promote the formation of spinel in specimens when sintered, this caused by the fine liquidity of pitch at high temperature. Because of the formation of AlON and MgAl_2O_4, the density, cold crushing strength and thermal shock resistance of specimens improved, after thermal shock test, the conservation rate of bend strength of blank sample remains 67%, but when pitch added, the number raise to 78%. Moreover, mosaic structure can formed when pitch and resin charred, and this will increase the carbon residue of composite, and it benefit to enhance the corrosion resistance and thermal shock resistance of specimens.
引文
[1] 吴淑芳,冶金用含碳耐火材料论文集[M].冶金工业部《耐火材料》编(1988),54.
    [2] 高振昕,等.耐火材料显微结构[M].冶金工业出版社.2002,6:224~226.
    [3] 张文杰,李楠.碳复合耐火材料[M].北京,科学出版社,1990 年.
    [4] 桂剑红译,镁质耐火材料的最新发展[J].国外耐火材料,2000 年第 4 期,P10~11.
    [5] 程秀梅译,冶炼超低碳钢用低碳 MgO-C 砖的开发[J].国外耐火材料,1999,4:59~60.
    [6] In-Kyung Bae,Moo-Chul Kim,et al. The improvement of MgO-C bricks toughness for RH snorkels,Posco,Korea.
    [7] Naofumi kido,Kenzo yamamoto,et al. Carbon Nanofiber-A new trial for Magnesia based bricks, Proc of the Unitecr,USA,2003:264~267.
    [8] Koichi Kanno, Nobuyuki Koike,Yozo Korai,Isao Mochida ,Makoto Komatsu,Mesophase pitch and phenolic resin blends as binders for magnesia–graphited bricks,Carbon,1999,37:195~201.
    [9] 彭晓艳,李林,等.低碳镁碳砖及其研究进展[J].耐火材料,2003,37(6)355~357,363.
    [10] 曾存峰,田守信,徐延庆.国外低碳镁碳耐火材料的研究进展[J].河南冶金,2006,14(3):3~5,38.
    [11] Naofumi kido,Kenzo yamamoto,et al. Carbon Nanofiber-A new trial for Magnesia based bricks[J],Proc of the Unitecr,USA,2003:264~267.
    [12] Shigeyuki Takanaga,Tsunemi Ochiai, et al. The application of the nano structural matrix to MgO-C bricks[J], Proc of the Unitecr,USA,2003:521~524.
    [13] 朱伯铨,张文杰,姚亚双.低碳镁碳耐火材料的研究现状与发展[J].《耐火材料》创刊四十周年特刊,2006,40:90~95.
    [14] Tsuboi S,Hayashi S,Nonobe K. Spalling resistance of low carbon MgO-C bricks[J]. Taikabutsu, 1999, 51(12):638~643.
    [15] 曾层峰,田守信,徐延庆.含碳耐火材料用结合剂及新技术在低碳镁碳耐火砖中的应用综述[J].中国科技论文在线,http://www.paper.edu.cn.
    [16] Shigeyuki Takanaga,Yoji Fujiwara,Manabu Hatta,Nano-Tech. refractories 3:Development of MgO-rimmed MgO-C brick[J].Proc of the Unitecr,USA,2005:148~151.
    [17] Takashi YAMAMURA. Lower Carbon Containing MgO-C Bricks with High Spalling Resistance[J]. ShinagawaTechnical Report 1996,Vol.39 57~65.
    [18] Hiroyuki Fuchimoto. Evaluation of ultra Low carbon Magnesia-carbon bricks[J]. 58~60
    [19] Syoji. New technologies of magnesia-carbon bricks for BOF[J].98~101.
    [20] Tamura S,Ochisi T,Takanaga S,et al. Nano-tech refractories 1:The development of the nano structuralmatrix[J]. Proc of the UNITECR, Japan,2003:517~520.
    [21] Takanaga S,Ochiai T,Kanai T,et al.Nano-tech refractories2:The application of the nano structuralmatrix to MgO-C brick[J].Proc of the UNITECR,Japan,2003:521~524.
    [22] Tsuboi S,Hayashi S,Nonohe K.Spalling resistance of low carbon. MgO-C brick[J], Taikabutsu,1999:638~643.
    [23] 八百井英雄.Development of magnesia-zircon castable for steel ladle slag line[J].耐火物,1993,45(9):521~522.
    [24] 王家栋译.日本连铸用耐火材料现状[J].国外耐火材料,1989,14(7):1~11.
    [25] 孙光.高纯烧结镁锆砂及含ZrO2镁质制品的应用与开发[J].国外耐火材料,2001(4):36.
    [26] 市川建冶.锆质耐火材料[J].国外耐火材料,1987,12:255.
    [27] 仉小猛.锆英石对MgO-C质耐火材料性能的影响研究[D].河北理工大学硕士学位论文,2006,7~8.
    [28] 涂军波,张文杰,汪厚植,等.烧结合成镁锆熟料的研究[J].耐火材料,1999,33(3):144~146.
    [29] 朱伯铨,李楠,田守信,等.SiO2对镁锆砂抗渣性的影响[J].武汉科技大学学报,2000,23(2):139~141.
    [30] 李君.MgO-ZrO2复合材料组成、结构及性能关系的研究[D].洛阳耐火材料研究院硕士学位论文,1994:58.
    [31] 陈显求,马利泰,姜玲章.电熔锆刚玉耐火材料中的微裂纹和ZrO2的晶型[J].耐火材料,1987,(1):1~6.
    [32] Torigoe A,Inoue K,Hoshiyama Y. Improvement of spalling resistance of low carbon MgO-C bricks[J]. Taikabutsu,2002,54(3):135~35.
    [33] 孙光.高纯烧结镁锆砂及含ZrO2镁质制品的应用与开发[J].国外耐火材料,2001(4):36.
    [34] 朱伯铨,李楠,田守信,等.电熔镁锆砂的抗渣性研究[J].耐火材料,2000,3:34.
    [35] 郑肖悟.ASC质耐火可塑性的研究和应用[J].耐火材料,1985,4:74.
    [36] 王维邦.耐火材料工艺学[M].冶金工业出版社,1983:40.
    [37] 徐慧娟.电熔镁砂中杂质含量对镁碳砖性能的影响[J].耐火材料,1999(6):363.
    [38] 张刚.镁碳砖的损毁机理及其预防对策[J].鞍钢技术,200(9),10-13.
    [39] 周惠兴.镁碳砖结合剂的研制和生产.耐火材料技术与发展[M],中国轻工业出版社,1992:219~226.
    [40] 张双庆.耐火材料用酚醛树脂结合剂的改性研究[D].武汉科技大学硕士学位论文,2004:2.
    [41] 李士强,赵雷,李亚伟,等.含碳耐火材料用新型碳质结合剂的对比分析.武汉科技大学学报,2007,30(5):484~487.
    [42] 卢福平译.耐火材料用酚醛树脂的最新发展趋势[J].国外耐火材料,l993(12).
    [43] 谭立华译.现代耐火材料使用的工艺与环境问题[J].国外耐火材料,1993(12).
    [44] 卢一国译.树脂结合滑板耐氧化性的提高[J].国外耐火材料,1996(2).
    [45] 高振昕,周宁生.2001年联合国际耐火材料会议论文摘评1:钢铁工业用耐火材料[C].耐火材料,2002,36(5):290~294.
    [46] G.Buchebner,Carbon-Bonding—a New Milestone on low Emission Magnesia-Carbon Bricks[J].
    [47] 牛巧玲,石干.耐火材料用酚醛树脂的发展状况[J].耐火材料,2006,40(3):221~224,230.
    [48] 李纯,等.沥青改性对铝电解预焙阳极块使用性能的影响[J].轻金属,2003,(12):38~42.
    [49] 卢福平,译.耐火材料用酚醛树脂的最新发展趋势[J].国外耐火材料,l993(12).
    [50] 水恒福等.中间相沥青用作镁碳砖粘结剂的可行性研究[J].华东理工大学学报,2002,28(1):51~53
    [51] 冯映桐,水恒福,欧阳林,等.中间相沥青用作MgO-C砖粘结剂[J].燃料与化工,1995,26(1):32~35.
    [52] 张雪松,程瑛,水恒福.镁碳砖用中间相沥青-酚醛树脂结合剂的研制[J].耐火材料,2007,41(4):271~273.
    [53] 王诚训.MgO-C质耐火材料[M].冶金工业出版社,1995,35.
    [54] 周英华.MgO-C 砖中金属添加剂的研究.本钢技术,2005,4:26~27.
    [55] 白晨,魏耀武,韩兵强.抗氧化剂对镁碳质出钢口管砖抗氧化性能影响[J].Wisco technology,2006,44(3):21~23,60.
    [56] 岳卫东,聂洪波,钟香崇,石凯.金属Al-Si复合不烧铝碳滑板材料的热机械性能及显微结构[J].耐火材料,2006,40(3):177~180.
    [57] 李新健,柯昌明,李楠.含碳耐火材料的防氧化方法[J].耐火材料,2006,40(2),133~135,142.
    [58] S.K.Nandy,N.K.Ghosh,D.Ghosh,G.C.Das,Hydration of coked MgO-C-Al refractories[J],Ceramics International,2006,32:163~172.
    [59] 孙荣海,刘百宽,译.碳质耐火材料[J].国外耐火材料,2005,30(6),5~19.
    [60] 李林.低碳镁碳复合材料[D].北京科技大学博士学位论文,2005:8~9.
    [61] C.G. Aneziris, J. Hub′alkov′a,R. Barab′as,Microstructure evaluation of MgO–C refractories with TiO2- and Al-additions[J],Journal of the European Ceramic Society,17 March 2006.
    [62] 叶方保,钟焰.含碳耐火材料用硼化物添加剂[J].耐火材料,1997,31(5):297~301
    [63] 程秀梅译.国外耐火材料,1994,11:52~57.
    [64] 刘景林译.氮化铝复合材料的氧化[J].国外耐火材料,2003,28(1):40.
    [65] 王林俊,孙加林,洪彦若.β-Si3N4对MgO-C砖高温性能的影响[J].耐火材料,2003,37(2):92~93,99.
    [66] 徐国涛,杨熹文,薛启文,等.氮化硅对烧成铝炭耐火材料的性能影响[J].硅酸盐通报, 1999,(5):18.
    [67] Masakazu O,Syouk Yl.Characteristics of MgO-ZrO2 raw materials[J].Taikabutsu,1992,44(7):427.
    [68] 朱伯铨,李楠,甘菲芳,等.电熔镁锆砂的组成对显微结构和性能的影响[J].耐火材料,1999,33(6):310~312,319.
    [69] 水恒福,冯映桐,高晋生.中间相沥青用作镁碳砖粘结剂的可行性研究[J].华东理工大学学报,2002,28(1):51~54.
    [70] Mohammad-Ali,Faghihi-Sani,Akira Yamaguchi.Oxidation kinetics of MgO–C refractory bricks.Ceramics International,2002,28:835~839.
    [71] 关振铎,张中太,焦金生.无机材料物理性能[M].清华大学出版社,2002,150~162.
    [72] 田蔚.材料物理性能[M].北京航空航天大学出版社,2001,321~333.
    [73] 苗恩铭,费业泰.热膨胀系数同弹性模量数学模型分析.黑龙江科技学院学报,2003,13(2):9~11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700