用户名: 密码: 验证码:
一维磁性纳米结构的制备及一维超晶格中粒子态的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α-Fe_2O_3是一种拥有中等带隙(2.1eV)的n型半导体,同时具有磁性,而且环境友好,在磁性存储器,光敏、气敏传感器,生物医疗等方面具有十分广阔的前景。α-Fe_2O_3一维纳米结构可能是实现纳米电子学与纳米自旋电子学相结合的完美载体。纳米材料的物理性质敏感依赖于其所具有的微结构,如何在生长过程中对α-Fe_2O_3一维纳米结构实现精确控制,获得具有特定尺度、单分散性好的一维磁性纳米结构就成了大家普遍关心的问题。本论文围绕一维磁性纳米结构的可控生长、以及一维超晶格中粒子态控制开展研究工作,以期实现构筑纳米自旋器件模型。
     运用热氧化法,通过控制反应室内的氧分压以及温度、时间等宏观实验条件,进行一次或者多次氧化,实现了Fe_2O_3一维纳米结构的控制生长,成功的获得了大面积α-Fe_2O_3各种不同横向尺度的纳米线、纳米带的阵列。实验结果显示:α-Fe_2O_3一维纳米结构的微结构与其生长点附近的氧含量密切相关。此外,通过热还原法,以α-Fe_2O_3一维纳米结构阵列为模板,获得Fe_3O_4一维铁磁纳米结构阵列,并对其磁学性能进行表征和分析。
     研究处于双余弦形式的光学超晶格中的单粒子系统量子态的激光调控问题,其中的双余弦势由两对相向传播的激光束所产生。运用Riccati变换我们得到拥有两个对应于不同边界条件和不同本征能量的简单而精确的Bloch解,这些精确解描述了系统Bloch态的一些有趣的物理性质。我们分析了这些解的稳定性,周期性,空间导数的分段连续性以及对边界条件的依赖性,并数值分析了不同参数情形波函数的对应波形。对本征能量与波函数和势场强度之间的关系的研究发现,能量值可正可负,分别对应于正能态和负能态。通过激光束调节边界条件,可以将系统控制到需要的态。作为一个例子,将这些精确解应用到一个简单的平面转子,结合量子微扰方法,我们得到较快收敛的本征能量与波函数。这些结果可以推广到多粒子系统以及粒子的内部电子态和外部运动态耦合系统,从而有可能在大深度超晶格的基础上实现量子逻辑操作。
α-Fe_2O_3 is an n type semiconductor with a middling gap(2.leV),it's a magnetic semiconductor with its environment-friendly.Ferric oxide has attracted extraordinary attention for their special physical properties and potential applications in magnetic access memory,light/gas sensors and biomedicine,α-Fe_2O_3 is a perfectly carrier to achieve the associativity of nanoelectronics and spinelectronics.It makes people pay more attention to the question that how to achieve the exact control in the process ofα-Fe_2O_3's growth to get the one-dimensional nanostructure with special scale and good monodispersity because the physical properties depend on the microstrcture of the nanomaterial.This letter discussed the preparation of one-dimensional magnetic nanostmctures and state-control of a particle in one-dimensional superlattice wants to built a model of nano spin device.
     α-Fe_2O_3 one-dimensional nanostructure(nanobelts and nanowires with controllable diameters)arrays have been successfully synthesized by thermally oxidizing iron foil directly.The morphologies and microstructures of these synthesized arrays depend much on the growth conditions such as the oxygen pressure,temperature and reaction time. We found that the growth ofα-Fe_2O_3 one-dimensional nanostructures follows a top-growth mechanism,in which the ratio of iron and oxygen atoms near the growth spots plays a key role.We do the thermally oxidizing for one or several times to synthesized the nanoneedles and other nanostructure successfully.In addition,we deoxidized theα-Fe_2O_3 one-dimensional nanostructures successfully to make Fe_3O_4 nanowires, and we discussed about it.
     The chapter four treats a single particle system in an optical superlattice of double-cosine form from two pairs of counter- propagating laser beams.By applying the Riccati transformation we obtain two sets of exact Bloch solutions of simple forms,which are associated with the different boundary conditions and eigenenergies.Some interesting physical properties described by the exact solutions are discussed in detail. Some properties of the solutions,such as the stabilities,periodicities and the piecewise continuities of the spatial derivatives,are discussed analytically and the corresponding profiles of wave functions are illustrated numerically.The eigenenergies are obtained in terms of the wave-vector and strengths of the potentials,and may be positive or negative,which corresponds to positive-energy or negative-energy state. By using some laser beams to adjust the boundary conditions,one can control the system to required state.As an application of the exact solutions a simple instance of planar rotor is treated approximately and some advantages of the new perturbation method are displayed.After all, by extending the results to many-particle system and coupling the external motional states with the internal electronic states of the particles, we can perform the quantum logic operations based on the double-cosine potential with a large well depth.
引文
[1].张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:3-9
    [2].薛增泉,刘惟敏.纳米电子学[M].北京:电子工业出版,2003:9-27
    [3].赵于文.低温等离子体在化学合成中的应用[J].现代化工,1991,1:48-52
    [4].C.M.Shen,X.G.Zhang,L.L.H.DC Electrochemical Deposition of CdSe Nanorods Array Using Porous Anodic Oxide Template[J].Materials Science and Engineering,2001,A303:19-23
    [5].Z.H.Yuan,H.Huang,L.Liu.Controlled Growth of Carbon Nanotubes in Diameter and Shape Using Template-Synthesis Method[J].Chemical Physics Letters,2001,345:39-43
    [6].T.Osaka.Electrodeposition of Highly Function Thin Films for M agnetic Recording Fevices of the Next Century[J].Eleetrochim Aeta.,2000,45:3311-3321
    [7].罗益民,黄可龙.纳米级a-FeO(OH)细粉的制备与表征[J].无机材料学报,1994,9(2):239-243
    [8].马振叶,李凤生,崔平.纳米Fe_2O_3的制备及其对高氯酸铵热分解的催化性能[J].催化学报,2003,24(10):795-795
    [9].T.M.Whimer,S.Jiang,P.C.Seareon.Fabrication and Magnetic Properties of Arrays of Metallic Nanowires[J].Science,1993,261,1-3:1316-1319
    [10].X.S.Peng,G.W.Meng,J.Zhang.Electrochemical Fabrication of Ordered Ag_2S Nanowire Arrays[J].Material Research Bulletin,2002,37:1369-1375
    [ll].V.Raposo,J.M.Garcia,Gonzalez.Long-range Magnetostatic Interactions in Arrays of Nanowires[J].J.Magn.Magn.Mater.,2000,222:227-232
    [12].G.I.Homyak,C.J.Patrissi,C.R.Martin.Fabrication,Characterization,and Optical Properties of Gold Nanoparticle/Porous Alumina Composites:The Nonscattering Maxwell Gamett Limit[J].J.Phys.Chem.,1997,B101:1548
    [13].H.R.Khan,K.Petrikowski.Anisotropic Structural and Magnetic Properties of Fe26Ni74 Nanowires Electrodeposited in the Pores of Anodic Alumina[J].J.Magn.Magn.Mater.,2000,215-216:526-528
    [14].牛新书,杜为民,蒋凯.纳米氧化铁基气敏材料的研究进展[J].电子元件与材料.2003,22(5):35-39
    [15].R.Fan,Y.Y.Wu,D.Y.Li,M.Yue,A.Majumdar,P.D.Yang.Fabrication of Silica Nanotube Arrays from Vertical Silicon Nanowire Templates[J].J.Am.Chem.Sot.,2003,125:5254-5255
    [16].S.J.Limmer,G.Z.Cao.Sol-Gel Electrophoretic Deposition for the Growth of Oxide Nanorods[J].AdV.Mater.,2003,15:427-431
    [17].N.A.Melosh,A.Boukai,F.Diana,B.Gerardot,A.Badolato,P.M.Petroff,J.R.Heath.Ultrahigh-Density Nanowire Lattices and Circuits[J].Science,2003,300:112-115
    [18].Z.F.Ren,Z.P.Huang,J.W.Xu,J.H.Wang,P.Bush,M.P.Siegal,P.N.Provencio.Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass[J].Science,1998,282:1105-1107
    [19].X.D.Wang,C.J.Summers,Z.L.Wang.Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays[J].Nano Lett.,2004,4:423-426
    [20].P.D.Yang.NanotechnologyWires on water[J].Nature,2003,425:243 -244
    [21].D.Li,Y.L.Wang,Y.N.Xia.Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays[J].Nano Lett.,2003,3:1167-1171
    [22].H.Zeng,M.Zheng,R.Skomski.Magnetic properties of self-assembled Co nanowires of varying length and diameter[J].J.Appl.Phys.,2000,87(9):4718-4720
    [23].M.J.Zheng,L.D.Zhang,G H.Li,W.Z.Shen.Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique[J].Chemical Physics Letters.,2002,363:123-128
    [24].X.G.Wen,S.H.Wang,Y.Ding,Z.L.Wang,S.H.Yang.Controlled Growth of Large-Area,Uniform,Vertically Aligned Arrays of a-Fe_2O_3 Nanobelts and Nanowires[J].J.Phys.Chem.B,2005,09:215-220
    [25].Y.L.Chueh,M.W.Lai,J.Q.Liang,L.J.Chou,Z.L.Wang.Systematic Study of the Growth of Aligned Arrays of a-Fe_2O_3 and Fe_3O_4Nanowires by a Vapor-Solid Process[J].Adv.Funct.Mater.,2006,16:2243-2251
    [26].S.Kar,S.Chaudhuri.Synthesis of highly oriented iron sulfide nanowires through solvothermal process[J].Materials Letters,2005,59:289-292
    [27].P.Kral,I.Thanopulos,M.Shapiro,Coherently controlled adiabatic passage[J].Rev.Mod.Phys.,2007,79,53-78
    [28].H.Rabitz,R.de Vivie-Riedle,M.Motzkus,K.Kompa.Whither the Future of Controlling Quantum Phenomena?[J].Science,2000,288:824-828
    [29].N.S.Ginsberg,S.R.Garner,L.V.Hau.Coherent control of optical information with matter wave dynamics[J].Nature,2006,445:623-626
    [30].C.E.Creffild.Quantum Control and Entanglement using Periodic Driving Fields[J].Phys.Rev.Lett.,2007,99:110501
    [31].Y.Wu,X.Yang.Strong-Coupling Theory of Periodically Driven Two-Level Systems[J].Phys.Rev.Lett.,2007,98:013601
    [32].J.M.Gomez,G Llorente and J.Plata.Tunneling control in a two-level system[J].Phys.Rev.A,1992,45:R6958-R6961
    [33].K.W.Mahmud,H.Perry and W.P.Reinhardt.Quantum phase-space picture of Bose-Einstein condensates in a double well[J].Phys.Rev.A,2005,71:023615
    [34].W.A.Lin and L.E.Ballentine.Quantum and chaos in driven anharmonic oscillator[J].Phys.Rev.Lett.,1990,65:2927-2930
    [35].E Grossmann,T.Dittrich,E Jung and E Hanggi.Coherence destruction of tunneling[J].Phys.Rev.Lett.,1991,67:516-519
    [36].K.Hai,W.Hai,Q.Chen.Exact manipulations to Bloch states of a particle in a double cosine potential[J].Phys.Lett.A,2007,367:445-449
    [37].J.Wan,P.Domachuk,M.M.Dignam,C.Martijn de Sterke.Electron dynamics and dynamic localization in asymmetric periodic potentials[J].Phys.Rev.B,2004,69:113304
    [38].S.A.Tatarkova,W.Sibbett,K.Dholakia.Brownian Particle in an Optical Potential of the Washboard Type[J].Phys.Rev.Lett.,2003,91:038101
    [39].M.Machholm,C.J.Pethick,H.Smith.Band structure,elementary excitations,and stability of a Bose-Einstein condensate in a periodic potential[J].Phys.Rev.A,2003,67:053613
    [40].H.L.Haroutyunyan,G.Nienhuis.Coherent control of atom dynamics in an optical lattice[J].Phys.Rev.A,2001,64:033424
    [41].D.Marx,P.Nielaba.Quantum "'melting" of orientationally ordered physisorbates[J].J.Chem.Phys.,1995,102:4538-4540
    [42].B.Hetenyi.Effect of periodicity restrictions on the ground state of quantum systems with periodic potentials[J].Phys.Rev.E,2000,61:3220-3222
    [43].R.M.Dimeo.Visualization and measurement of quantum rotational dynamics[J].Am.J.Phys.,2003,71:885-887
    [44].S.Mishra,S.Satpathy.Kronig-Penney model with the tail-cancellation method[J].Am.J.Phys.,2001,69:512-513
    [45].A.Khare,U.Sukhatme.Analytically solvable PT-invariant periodic potentials[J].Phys.Lett.A,2004,324:406-414
    [46].V.M.Tkachuk,O.Voznyak.Quasi-exactly solvable periodic and random potentials[J].Phys.Lett.A,2002,301:177-183
    [47].S.A.Wolf,D.D.Awschalom,R.A.Buhrman,J.M.Daughton,V.S.Molnar,M.L.Roukes,A.Y.Chtchelkanova,D.M.Treger.Spintronics:A Spin-Based Electronics Vision for the Future[J].Science,2001,294:1488-1495
    [48].T.M.Whitney,J.S.Jiang,P.C.Searson,C.L.Chien.Fabrication and Magnetic Properties of Arrays of Metallic Nanowires[J].Science,1993,261:1316-1319
    [49].L.Sun,P.C.Searson,C.L.Chien.Finite-size effects in nickel nanowire arrays[J].Phys.Rev.B,2000,61:R6463-R6466
    [50].D.J.Sellmyer,M.Zheng,R.Skomski.Magnetism of Fe,Co and Ni nanowires in self-assembled arrays[J].J.Phys..Corders.Matter,2001,13:R433-R460
    [51].X.G.Wen,S.H.Wang,Y.Ding,Z.L.Wang,S.H.Yang.Controlled Growth of Large-Area,Uniform,Vertically Aligned Arrays of a-Fe_2O_3 Nanobelts and Nanowires[J].J.Phys.Chem.B,2005,109:215-220
    [52].Y.L.Chueh,M.W.Lai,J.Q.Liang,L.J.Chou,Z.L.Wang.Systematic Study of the Growth of Aligned Arrays of a-Fe_2O_3 and Fe_3O_4Nanowires by a Vapor-Solid Process[J].Adv.Funct.Mater.,2006,16:2243-2251
    [53].S.Kar,S.Chaudhuri.Synthesis of highly oriented iron sulfide nanowires through solvothermal process[J].Materials Letters,2005,59:289-292
    [54].C.L.Zeng,D.S.Tang,X.H.Liu,K.Hai,Y.Yang,H.J.Yuan,S.S.Xie.Preparation of Tin Oxide Self-assembly Nanostructures by Chemical Vapor Deposition[J].Acta Phys.Sin.,2007,56:6531-1536
    [55].X.H.Liu,D.S.Tang,C.L.Zeng,K.Hai,S.S.Xie.Controllable Preparation of SnO2 One-dimensional Nanostructures by Chemical Vapor Deposition[J].Acta Phys.Chim.Sin.,2007,23(3):361-366
    [56].D.F.Zhang,L.D.Sun,C.J.Jia,Z.G Yan,L.P.You,C.H.Yan.Hierarchical Assembly of SnO_2 Nanorod Arrays on r-Fe2O3 Nanotubes:A Case of Interracial Lattice Compatibility[J].J.Am.Chem.Soc.,2005,127:13492-13493
    [57].W.X.Zhang,X.G.Wen,S.H.Yang.Single-crystalline scroll-type nanotube arrays of Copper hydroxide Synthesized at room temperature[J].Adv.Mater.,2003,15(10):822-825l
    [58].陈艳辉,张兴堂,薛中会,李蕴才,黄亚彬,杜祖亮,李铁津.二 氧化锡纳米管阵列的溶胶凝胶法制备与结构表征[J]科学通报,2004,49(23):2422-2425
    [59].贺建,黄运华,张跃,顾有松,纪箴,周成.ZnO纳米电缆的制备结构和生长机理[J].Acta Phys.Chem.Sin.,2005,21(6):637-640
    [60].J.R.Premkumar and S.B.Khoo.Electrochemically generated super-hydrophilic surfaces[J].Chem.Commun,2005,640-642
    [61].A.I.Persson,M.T.Bjolrk,S.Jeppesen,J.B.Wagner,L.R.Wallenberg,L.Samuelson.InAsl-xPx Nanowires for Device Engineering[J].Nano Letters,2006,6(3):403-407
    [62].P.I.Archer,P.V.Radovanovic.Low-Temperature Activation and Deactivation of High-Curie-Temperature Ferromagnetism in a New Diluted Magnetic Semiconductor:Ni~2+-Doped SnO_2[J].J.Am.Chem.Soc.,2005,127:14479-14487
    [63].P.G.Collins,K.Bradley,M.Ishigami.Extreme oxygen sensitivity of electronic properties of carbon nanotubes[J].Science,2000,287(5459):1801-1804
    [64].Y.Liu,M.L.Liu.Growth of Aligned Square-Shaped SnO_2 tube Arrays[J].Adv.Funct.Mater.,2005,15(1):57-62
    [65].W.Hai,M.Feng.X.Zhu,Energy gaps of a trapped ion interacting with a laser field[J].J.Phys.A,1999,32:8265-8273
    [66].M.Feng,W.Hai.Series solution of two trapped ions experiencing the standing wave of a resonant laser[J].Phys.Lett.A,1999,263:209-217
    [67].W.Hai,Q.Xie,J.Fang.Quantum chaos and order based on classically moving reference frames[J].Phys.Rev.A,2005,72:012116
    [68].G.Lu,W.Hai,L.Cai.Near coherent states of an electron in a time-dependent linear potential[J].Phys.Lett.A,2006,357:181-187
    [69].W.Hai,S.Huang,K.Gao.Wavepacket trains of a Paul trapped ion[J].J.Phys.B,2006,36:3055-3061
    [70].B.Damski,J.Zakrzewski,L.Santos,P.Zoller,M.Lewenstein,Atomic Bose and Anderson Glasses in Optical Lattices[J].Phys.Rev.Lett.,2003,91:080403.
    [71].C.Kittel.Introduction to Solid State Physics[M].New York:Wiley,1976:17-20
    [72].B.Zhou.Quantum-classical crossover of the escape rate in the two-parameter doubly periodic potential[J].Phys.Lett.A,2005 338:439-445
    [73].X.Zhu,D.Qi.Characteristics of Trapped Ions in the Second Stability Region of a Paul Trap[J].J.Mod.Opt.,1992,39:291-303
    [74].D.Leibfried,R.H.Blatt,C.Monroe,D.Wineland,Quantum dynamics of single trapped ions[J].Rev.Mod.Phys.,2003,75:281-324
    [75].N. W. McLachlan. Theory and Application of Mathieu Functions[M].London: Oxford Univ. Press, 1947: 35-37
    
    [76].W. Hai, M. Feng, X. Zhu, L. Shi, K. Gao, X. Fang, Alternative quantum perturbation theory without divergences[J]. Phys. Rev. A, 2000,61:052105
    
    [77].K. E. Strecker, G. B. Partridge, A. G. Truscott, R. G. Hulet. Formation and propagation of matter-wave soliton trains[J]. Nature, 2002,417: 150-154
    
    [78].M. Greiner, O. Mandel, T. Esslinger, T.W. Hansch, I. Bioch. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms[J]. Nature, 2002, 415: 39-44
    
    [79].D.W. L. Sprung, J. D. Sigetich, H. Wu, J. Martorell. Bound states of a finite periodic potential[J]. Am. J. Phys., 2000, 68: 715-772

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700