用户名: 密码: 验证码:
基于SiO_2核—壳结构的三基色荧光粉制备及其发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土发光材料是至今为止一类重要的光电功能材料,针对广泛使用的稀土三基色荧光粉材料存在的问题,采用核-壳结构的材料设计思想和制备技术,开展低成本高性能荧光粉材料的制备研究,对提高我国稀土资源的利用效率具有重要的意义。
     本文在总结稀土发光材料的原理与发展的基础上,提出采用核-壳结构的材料设计思想,利用Pechini溶胶-凝胶法,以单分散SiO_2微球作为核层材料合成了红色SiO_2@SrTiO_3:Pr,蓝色SiO_2@CaWO_4,以及绿色SiO_2@LaF_3:Ce,Tb三基色核-壳结构的荧光材料;采用XRD、FE-SEM、EDS、TEM、FT-IR、PL谱等手段,对荧光粉的颗粒形貌与尺寸大小、分散状态、包覆组分和物相种类及结构进行了测试与表征;对pr~(3+),Tb~(3+)等稀土离子在核-壳结构发光材料中的发光性质,Ce~(3+)与Tb~(3+)之间的能量传递现象进行了重点分析,探讨和分析了材料制备工艺、包覆晶相种类与结构、核层与壳层结构状态、以及包覆荧光粉材料发光性能之间的关联规律。根据发光强度和材料热处理温度、包覆次数、前驱液中PEG浓度之间的关联规律,获得了适宜的包覆结构荧光粉制备的工艺条件范围。
     通过Pechini溶胶-凝胶法,合成了以SiO_2为核层材料的SiO_2@SrTiO_3:Pr核-壳结构荧光粉。结果表明,在目前工艺条件下能够在微球SiO_2表面包覆上SrTiO_3:Pr荧光粉,包覆荧光粉保持了单分散SiO_2微球的形貌特征;且壳层荧光粉厚度可以通过包覆次数进行调控。PL谱测试结果表明,包覆SiO_2@SrTiO_3:Pr荧光粉发出的是峰值位于615 nm的pr~(3+)离子~1D_2→~3H_4跃迁为主的红色光。
     通过Pechini溶胶-凝胶法,合成了以SiO_2为核层材料的SiO_2@CaWO_4核壳结构荧光粉。结果表明,在目前工艺条件下能够在微球SiO_2表面包覆上CaWO_4荧光粉,核一壳结构SiO_2@CaWO_4荧光粉表面光滑、没有显著团聚的球形颗粒,粒径大致在240 nm左右。PL谱测试表明,荧光粉的发光颜色为蓝色,分析认为这是由WO_4~(2-)作为独立发光中心发出的特征发光。
     通过Pechini溶胶-凝胶法,合成了以SiO_2为核层材料的SiO_2@LaF_3:Ce,Tb核-壳结构荧光粉。结果表明,包覆产物为球形、外表较光滑、粒径约在300nm左右的颗粒,不过颗粒间有较明显的团聚现象。XRD和EDS结果表明获得了SiO_2@LaF_3:Ce,Tb核-壳包覆结构的荧光粉。PL谱测试结果表明,在330 nm激发下,包覆产物SiO_2@LaF_3:Ce,Tb出现了四个中心位置分别在492 nm,544nm,586 nm和612 nm的主发射峰,它们分别属于Wb~(3+)的~5D_4→~7F_J(J=6,5,4,3)跃迁发射。其中最强发射峰为544 nm,为绿光发射。
     研究表明,采用成本较低的SiO_2为核层材料,可以制备出球形的、尺寸可以根据核层颗粒大小进行调节的红色SiO_2@SrTiO_3:Pr,蓝色SiO_2@CaWO_4和绿色SiO_2@LaF_3:Ce,Tb三基色荧光粉材料。研究也发现,采用包覆结构制备的荧光粉发光强度与固相法相比较,还有一定的差距,需要从核层颗粒尺寸、制备工艺等方面继续研究。
In nowdays,rare-earth luminescence material is still one of the most important optoelectronic functional materials.It is important to develop core@shell rare-earth phosphors with low cost and high performance so that to improve the utlization efficency of rare-earth resource in our nation.
     In this thesis,the principle and development of rare-earth phosphors were reviewed,and the design idea of core@shell structure was proposed to develop rare-earth phosphors including the SiO_2@SrTiO_3:Pr,blue SiO_2@CaWO_4 and green SiO_2@LaF_3:Ce,Tb trichromatic luminescent materials.Above mentioned core-shell structures phosphors were synthesized by Pechini sol-gel method using mono-dispersive SiO_2 microspheres as cores.The particle sizes,morphologies, component of shells and phases of as-prepared phosphors were investigated with XRD,FE-SEM,EDS,TEM,FT-IR,PL measurement,etc.The luminescent properties of rare reath ions(Pr~(3+),Tb~(3+))and energy transfer properties from Ce~(3+)to Tb~(3+)in core-shell structure luminescent materials were analyzed.The relationships among preparation techniques,composition and structure of shells,structures of shells and cores,and luminescent properties of these phosphors were discussed.The optimal synthetic conditions of core-shell phosphors were obtained according to the relations of luminescent intensities,heat-treatment temperature,coating times and the PEG concentrations in the precursor.
     Spherical SiO_2 particles were coated with SrTiO_3:Pr phospher as shell layer by Pechini sol-gel method.The FE-SEM and TEM results indicated that SrTiO_3:Pr can be coated on SiO_2 surfaces using this technique,and the core-shell structured phosphor particles are uniform and maintain the mono-dispersive morphology of initial SiO_2 core.The thickness of shell layer increased with increased coating cycles. The PL results showed that the core-shell phosphor emits red light originated from the ~1D_2→~3H_4 transition of Pr~(3+)ion with a maximum peak at 615 nm.
     Core-shell structured SiO_2@CaWO_4 phosphor was synthesized by coating mono-dispersive SiO_2 microspheres with CaWO_4 phosphor as shell layer by Pechini sol-gel method.The FE-SEM and TEM results showed that particles with core-shell structure have smooth surface,high dispersion state,spherical shape and narrow size distribution with an average size of about 300 nm.PL results showed that the phosphor emits a strong blue emission band that was suggested to be originated from the characterestic luminescence of WO_4~(2-)as independent luminescent centers.
     LaF3:Ce~(3+),Tb~(3+)phosphor layer has been deposited successfully on mono-dispersed and spherical SiO_2 microspheres by Pechini sol-gel method.The FE-SEM results showed the core-shell structured phosphor maintains the morphology of SiO_2 with spherical shape and smooth surface with an average particle size of about 310 nm,nevertheless obvious aggregation occurs in this system.The XRD and EDS results indicated that SiO_2@LaF_3:Ce,Tb phosphors with core-shell structure were successfully synthesized.PL measurements indicated that under the excitation of 330 nm,four emission peaks occurred at 492 nm,544 nm,586 nm and 612 nm for SiO_2@LaF_3:Ce,Tb products,where these peaks were ascribed to the Tb~(3+)~5D_4→~7F_J (J=6,5,4,3)transitions.The emission peak with greatest intensity is at 544 nm, which is characteristic of green light emission in the core-shell particles.
     Therefore,red emitted SiO_2@SrTiO_3:Pr,blue emitted SiO_2@CaWO_4 and green emitted SiO_2@LaF_3:Ce,Tb trichromatic luminescent phosphors with spherical shape, whose sizes could be tuned according to the size of core-shell particles,could be successfully synthesized using low-cost SiO_2 as core materials.It was also found that the photo-luminescent intensity of phosphors prepared by coating methods was not as good as that of phosphors prepared by solid state method,and it may be improved by controlling the core-shell particle sizes and synthetic techniques,etc.
引文
[1]孙家跃,杜海燕,胡文祥,固体发光材料[M],北京,化学工业出版社,2003。
    [2]倪嘉绩,洪广言,稀土新材料及新流程进展[M],科学出版社。
    [3]苏文斌,谷学新,邹洪,朱若华,稀土元素发光特性及其应用[J],化学研究,2001,4(12):55-59。
    [4]方容川,固体光谱学[M],中国科学技术大学出版社,2001。
    [5]Caruso F,Nanoengineering of Particle Surfaces[J].Adv.Mater,2001,13(1),11-22.
    [6]全国第一届溶胶凝胶会议论文集[C].“特种玻璃”,1990,7(3).
    [7]Jin T,Tsutsumi S,Deguchi Y,et al.Luminescnce property of the Terbium bipyridyl complex incorporated in silica matrix by a sol-gel method[J].J.Electrochem.Soc.1995,142,L195-L197.
    [8]Jin T,Tsutsumi S,Deguchi Y,et al.Preparation and luminescence characteristics of the Europium and Terbium complexes incorporated into a silica matrix using a sol-gel method[J].J.Alloy Comp.1997,252,59-66.
    [9]Jin T,Tsutsumi S,Deguchi Y,et al.AdachiLuminescence characteristics of the lanthanide complex incorporated into an ORMOSTL matrix using a sol-gel method [J].J.Electrochem.Soc.1996,143,3333-3336.
    [10]Mack H,Reisfeld R,Avnir D,Fluorescence of rare earth ions adsorbed on porous vycor glass[J].Chem.Phys.Lett.1983,99,238-239.
    [11]Tanaka K.,Yoko Y.,Atarashi M.,et al.Preparation of Fe_3O_4 thin film by the sol-gel method and its magnetic properties[J].J.Mater.Sci.Lett.1989,8,83-85.
    [12]Cuikun L,Deyan K,Xiaoming L,Huan W,Min Y,Jun L.et al Monodisperse and Core-Shell-Structured SiO_2@YBO_3:Eu~(3+)Spherical Particles:Synthesis and Characterization[J].Inorg Chem,2007,46,2674-2681.
    [13]Xiaoming L,Peiyun J,Jun L.et al.Monodisperse spherical core-shell structured SiO_2-CaTiO_3:Pr~(3+)phosphorsfor field emission displays[J].JOURNAL OF APPLIED PHYSICS,2006,99,124902.
    [14]Peiyun J,Xiaoming L,Jun L,et al.Sol-gel synthesis and characterization of SiO_2@CaWO_4,SiO_2@CaWO_4:Eu~(3+)/Tb~(3+)core-shell structured spherical particles[J].NANOTECHNOLOGY.2006,17,734-742.
    [15]Min Y,Huan W,Jun L.et al.Sol-gel synthesis and photolumi- nescence properties of spherical SiO_2@LaPO_4:Ce~(3+)/Tb~(3+)particles with a core-shell structure[J].NANOTECHNOLOGY. 2006,17,3245-3252.
    
    [16] Min Y, Lin J, Xiaoming L et al. Silica spheres coated with YVO_4:Eu~(3+) layers via sol-gel process: a simple method to obtain spherical core-shell phosphors[J]. Chem.Mater.2005,17(7), 1783-1791.
    
    [17] Huan W, Cuikun L, Xiaoming L, et al. Monodisperse spherical core-shell-structured phosphors obtained by functionalization of silica spheres with Y_2O_3:Eu~(3+) layers[J].App. Phys. Lett., 2005, 87,181907.
    
    [18] Caruso F, Lichtenfeld H, Donath E, et al.Investigation of Electrostatic Interactions in Polyelectrolyte Multilayer Films:Binding of Anionic Fluorescent Probes to Layers Assembled onto Colloids [J].Macromolecules, 1999, 32, 2317-2322.
    
    [19] Aliev F G, Correa-Duarte M A, Layer-By-Layer Assembly of core-shell magnetite nanoparticles:effect of silica coating on interparticle interaction and magnetic properties [J] .Adv. Mater., 1999,11 (12), 1006-1010.
    
    [20] Caruso F, Lichtenfeld H, Giersig M, et al. Electrostatic Self-Assembly of Silica Nanoparticle-Polyelectrolyte Multilayers on Polystyrene Latex Particles[J].J. Am. Chem. Soc., 1998, 120(33), 8523-8524.
    
    [21] Caruso F, Caruso R A, Mohwald H, Production of hollow microspheres from nanostructured composite particles [J].Chem. Mater., 1999,11(11), 3309-3314.
    
    [22] Kelley S W, Kim H N, Mallouk T E, Layer-by-Layer Assembly of Intercalation Compounds and Heterostructures on Surfaces:Toward Molecular OBeakerO Epitaxy [J].J. Am. Chem.Soc., 1994,116(19), 8817-8818.
    
    [23] Kotov N A, Haraszti T, Turi L, et al. Mechanism of and Defect Formation in the Self-Assembly of Polymeric Polycation-Montmorillonite Ultrathin Films[J].J.Am. Chem. Soc., 1997,119(29), 6821 -6832.
    
    [24] Astoriza-Santos L, Koktysh D S, Mamedov A A, et al, One-pot synthesis of Ag@TiO2 core-shell nanoparticles and their layer-by-layer assembly [J].Langmuir, 2000, 16(6),2731-2735.
    
    [25]Pol VG, Motiei M, Gedanken A, et al. Sonochemical deposition of air-stable iron nano-particles on monodispersed carbon spherules [J]. Chem.Mater, 2003, 15(6):1378-1384.
    
    [26]GPol V, Gedanken A, Calderon-Morcno J. Deposition of gold nanoparticles on silica spheres:a sonochemical approach [J]. Chem. Mater, 2003, 15(5): 1111-1118.
    
    [27]Gedanken A, Reisfeld R, Sominski E, et al. Sonochemical preparation and characterization of Europium oxide doped in and coated on ZrO_2 and Yittium-stabilized zirconium(YSZ)[J].J.Phys.Chem.B,2000,104(30):7057-7065.
    [28]Patna A,SomW ska E,Ranesh S,et al.Sonochemical preparation and characterization of Eu_2O_3 and Tb_2O_3 doped in and coated on silica and alumina nanoparticles[J].J.Phys.Chem.B,1999,103(17):3361-3365.
    [29]Mastai Y,Koltypin Y,et al.Sonochemical Coating of Nanosized Nickel on Alumina Submicrospheres and the Interaction between the Nickel and Nickel Oxide with the Substrate[J].Chem.Mater,1999,11(9):2350-2359.
    [30]Ramesh S,Koltypin Nanophasic Amorphous Y,Prozorov R,et al.Sonochemical Deposition and Characterization of Nickel on Silica Microspheres[J].Chem.Mater,1997,9(2):546-551.
    [31]Ramesh S,Prozorov R,Gedanken A.Ultrasound driven deposition and reactivity of nanophasic amorphous iron clusters with surface silanols of submicrospherical silica[J].Chem.Mater,1997,9(12):2996-3004.
    [32]GPoI V,Reisfeld R,Gedanken A.Sonochemical synthesis and optical properties of europium oxide nanolayer coated on titania[J].Chem.Mater,2002,14(9):3920-3924.
    [33]Dhas A,Zaban A,Gedanken A.Surface synthesis of zinc sulfide nmoparticles on silica microspheres:sonochemical preparation,characterization,and optical properties [J].Chem.Mater,1999,11(3):806-813.
    [34]崔洪涛,洪广言.聚苯乙烯包覆Y_2O_3:Eu~(3+)颗粒及表征[J].应用化学,2001,18,208-211.
    [35]杜廷发,现代仪器分析[M].国防科技大学出版社,1997,311.
    [36]Sheng Enshan,Sutherl Ian and,quantitative A XPS study of spherically shaped powders coated with an overlayer[J].Sur.Sci.1994,314,325-330.
    [37]李强,高镰,严东生.纳米Y_2O_3:Eu~(3+)粉体的表面包膜研究[J].无机材料学报,1999,14,150-154.
    [38]Lvov Y M,MOhwald H.Protein Architecture:Interfacing Molecular Assemblies and Immobilization Biotechnology[M].New York:Marcel Dekker,2000.
    [39]Aga D S,Thurman E M,Immunochemical Technology for Environmental Applications[C].ACS Symposium Series 657,Washington:American Chemical Society,1996.
    [40]Guilbault G G,Mascini M.Analytical Uses of Biological Compoundsfor Detection,Medical and Industrial Uses[M].Boston:Reidel,1988.
    [41]Turner A P F,Karube I,Wilson G S.Biosensors:Fundamentals and Applications[M], Oxford: Oxford University Press, 1987.
    
    [42]Hermanson G T, Mallia A K, Smith P K. Immobilized Affinity Ligand Techniques[M]. London: Academic, 1992.
    
    [43] Catty D, Raykundalla C. Antibodies: A Practical Approach, Vol. II [M].Oxford: IRL Press, 1989.
    
    [44]Hayat M A.Colloidal Gold: Principles, Methods and Applications, Vol.l[M]. NewYork: Academic, 1989.
    
    [45]Peula J M, Hidalgo-Alvarez R, Nieves F J D.Covalent binding of proteins to acetal-Functionl-ized latexes.I. Physics and chemical adsorption and electrokinetic characterization [J].J. Colloid Interface Sci, 1998, 201(2): 132-138.
    
    [46]Peula J M, Fernandez A, Hidalgo R, et al.Comparative study on the colloidal Stability mechanisms of sulfonate latexes[J]. Langmuir, 1997,13 (15): 3938-3943.
    
    [47]Peula J M, Hidalgoalvarez R, Nieves F J D. Coadsorption of IGG and BSA onto Sulfonated Polystyrene Latex.l. Sequential and Competitive Coadsorption Isotherms[J]. J. Biomater. Sci, Polym. Ed, 1995, 7(3): 231-240.
    
    [48]Arshady R. Microspheres for Biomedical Applications-Preparation of Reactive and Labeled Microspheres[J]. Biomaterials, 1993, 14(1): 5-15
    
    [49]Mirkin CA, Letsinger RL, Mucic RC, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J]. Nature, 1996,382(6592): 607-609.
    
    [50]Alivisatos P.The use of nanocrystals in biological detection[J]. Nature Biotechnology, 2004,22 (1): 47-52.
    
    [51]Shenton W, Davis S A, Mann S. Directed self-assembly of nanoparticles into macroscopic materials using antibody-antigen recognition[J]. Adv. Mater, 1999, 11(6): 447-449.
    
    [52]Connolly S, Fitzmaurice D. Programmed assembly of gold nanocrystals in aqueous solution[J]. Adv. Mater. 1999, 11(14): 1202-1205.
    
    [53]Taylor R F. Protein Immobilization[M]. New York: Marcel Dekker, 1990.
    
    [54]Collings A F, Caruso F. Biosensors: recent advances[J]. Prog. Phys. 1997, 60(11): 1397-1445.
    
    [55]Rao S V, Anderson K W, Bachas L G. immobilization of protein Orienteds [J].Mikrochim. Acta, 1998,128(3-4): 127-143.
    
    [56]Caruso F, MOhwald H.Protein multilayer formation on colloids through a stepwise self-assembly-technique[J]. J. Am. Chem. Soc, 1999, 121(25): 6039-6043.
    [57]Caruso F,Fiedler H,Haage K.Assembly of beta-glucosidase multilayers on spherical colloidal particles and their use as active catalysts[J].Colloids Surf.A:Physicochem.Eng.Aspects 2000,169(1-3):287-293.
    [58]Schuler C,Caruso F.Preparation of enzyme multilayers on colloids for biocatalysis[J].Macromol.Rapid Commun.2000,21(11):750-753.
    [59]Margaret A.Hines and Philippe Guyot-Sionnest,Synthesis and Charac-terization of Strongly Luminescing ZnS-Capped CdSe Nanocrytals[J].J.Phys.Chem 1996,100,468-471.
    [60]Cao Yunwei and Banin Uri,Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores[J].J.Am.Chem.Soc.,2000,122(40),9692-9702.
    [61]孙聆东,付雪峰,钱程等,水热法合成CdS/ZnO核壳结构纳米微粒[J].高等学校化学学报,2001,22,879-882.
    [62]羊亿,申德振,于广友等,CdS/ZnS包覆结构纳米微粒的微乳液合成及光学特性[J].发光学报,1999,20,251-253.
    [63]Spahnel L,Haase M,Weller H,et al.Photochemistry of colloidal semiconductions.20:surface modification and stability of strong luminescing CdS particles[J].J.Am.chem.Soc.,1987,109(19),5649-5655.
    [64]Carolyn F H,Kristi A A,Annen J B,et al.Demonstration of a shell-core structure in layered Cadmium Selenide-Zinc Selenide small particles by X-ray photoelectron and auger spectroscopies[J].J.Phys.chem.,1992,96(9),3812-3817.
    [65]Kottan A R,Hull R,Opila R L,et al.Nucleation and growth of Cadmium Selendie on Zinc Sulfide quantum crystallite seeds,and vice verse,in inverse micell media[J]J.Am.chem.Soc.,1990,112(4),1327-1332.
    [66]Schlamp M C,Peng X G,Alivisatos A P,Improve efficiencies in light emitting diodes made with CdSe(CdS)core/shell type nanocrystals and a semiconducting polymer[J].J Appl Phys,1997,82(12),5837-5842.
    [67]Peng X G,Schlamp M C,Kadavanich A P,et al.Epitaxial growth of highly luminescent CdSe/CdS core-shell nanocrystals with photostability and electronic accessibility[J]J AM chem Soc 1997,119(30),7019-7029.
    [68]Peter R,Joel B,Adam P.Highly Luminescent CdSe/ZnSe Core/Shell Nanorystals of Low Size Dispersion[J].Nanoletters,2002,2(7),781-784.
    [69]Chemisavskaya O,Liwei C and Mohammad A et al.Photoionization of Individual CdSe/CdS Core/Shell Nanocrystals on Silicon with 20nm Oxide Depends on Surface band Bending[J].Nanoletters,2003,3(4),497-501.
    [70]Waedow D, Bredol M, Koehler I,et al.Manufacture of a phosphor composition with hematite [P]. US Patent, No 6013314.
    
    [71]Inoe K, Watanabe M, Filter-coated phosphor [P]. US Patent, No.4339501.
    
    [72]Qiang L, Lian G, Dongsheng L. Effects of the Coating Process on Nanoscale Y_2O_3 Eu~(3+) Powders [J].Chem. Mater,1999,11(3):533-535.
    
    [73]Oldfield G, Ung T, Paul M. Au@SiO2 core-shell nanocapacitors [J]. Adv. Mater,2000, 12(20): 1519-1522.
    
    [74]Chau C N, Salvi P W, Silloway T V. Phosphor powder for coating lamp envelopes and method for preparation [P]. EP Patent, No 0852255.
    
    [75]Iinedest Keith A, Gary Richard A, Lichtensteiger Silvia E. Method for making moisture insensitive zinc sulfide based luminescent materials [P]. US Patent, No 5080928.
    
    [76]Amimoto A, Nishio N, Kawashima Y, Coating for phosphor particles [P]. US Patent,No 5856009.
    
    [77]Udd Kenton D. Electroluminescent phosphor particles encapsulated with an aluminum oxide based multiple oxide coating [P]. US Patent, No 5958591.
    
    [78]Zaraojan W, Mary W, Bechtel H, et al. Aluminate phosphor with a polyphosphate coating [P]. US Patent, No 5998047.
    
    [79]Vestal C R, Zhang Z J. Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles [J]. J.Am.Chem. Soc,2002,124(48): 14312-14313.
    
    [80]Albert P P, Michel P B, Van Bruggen, et al. Magnetic Silca Dispersions: Preparation and Stability of Surface-Modified Silica Particles with a Magnetic Core [J]. Langmuir, 1994, 10(1): 92-99.
    
    [81]Waseshmukul S, Rovelyn T, Nikoleta T, et al. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants [J]. Langmuir, 2001,17(10): 2900-2906.
    
    [82]Liu Q X, Xu Z G, Finch J A, et al. A novel two-step silica-coating process for engineering magnetic nanocomposites [J]. Chem. Mater, 1998, 10(12), 3936-3940.
    
    [83]GPoI V, Gedanken A, Calderon-Moreno J, Deposition of gold nanoparticles on silica spheres:a sonochemical approach [J]. Chem. Mater, 2003, 15(5):1111-1118.
    
    [84]Hsu Wan P, Yu R, Matijevic E. Titania Coated Silica [J]. J. Colloid Interface Sci, 1993,156:56-65.
    
    [85]Jing X, Ireland T G, Gibbons C, et al. Control of Y203:Eu spherical particle phosphor size,assembly properties, and performance for FED and HDTV[J]. J. Electrochem. Soc, 1999,146(12):4546-4658.
    
    [86]Jiang Y D, Wang Z L, Zhang F, et al. Synthesis and characterization of Y_2O_3: Eu~(3+) powder phosphorby ahydrolysis technique[J]. J. Mater. Res, 1998,13(10):2950-2955.
    
    [87]Caruso R A, Antonietti M. Sol-Gel Nanocoating:An Approach to the Preparation of Structured Materials[J]. Chem. Mater, 2001,13(10):3272-3282.
    
    [88]Lichtenfeld H, Mohwald H. Electrostatic Self-Assembly of Silica Nanoparticle -Polyelectrolyte Multilayers on Polystyrene Latex Particle[J]. J. Am. Chem. Soc, 1998, 120:8523-8524.
    
    [89] Jiang Z H, Liu C Y. Seed-Mediated Growth Technique for the Preparation of a Silver Nanoshell on a Silica Sphere[J]. J. Phys. Chem. B, 2003, 107(45):12411-12415.
    
    [90]Sertchook H, Avnir D. Submicron Silica/Polystyrene Composite Particles Prepared by a One-Step Sol-Gel Process[J]. Chem. Mater, 2003, 15(8):1690-1694.
    
    [91] Ung T, Liz-Marzan L M, Mulvaney P. Controlled Method for Silica Coating of Silver Colloids. Influence of Coating on the Rate of Chemical Reactions[J]. Langmuir, 1998, 14(14):3740-3748.
    
    [92] Fleming M S, Mandal T K, Walt D R. Nanosphere-Microsphere Assembly: Methods for Core-Shell Materials Preparation[J]. Chem. Mater, 2001, 13(6):2210-2216.
    
    [93] Kim H, Achermann M, Balet LP,et al. Synthesis and characterization of Co/CdSe core/shell nanocomposites: Bifunctional magnetic-optical nanocrystals[J]. J. Am.Chem.Soc, 2005, 127 (2):544-546.
    
    [94]Krassimir P Velikov, Alfons van Blaaderen. Synthesis and Characterization of Monodisperse Core-Shell Colloidal Spheres of Zinc Sulfide and Sifica[J]. Langmuir, 2001, 17(16):4779-4786.
    
    [95]Kompe K, Borchert H, Storz J, et al. Green-emitting CePO4:Th/LaPO4 core-shell nanoparticles with 70% photoluminescence quantum yield[J]. Angewandte Chemie -International Edition, 2003,42 (44):5513-5516.
    
    [96] Lai S J, Chang X J, Tian L, et al. Fluorometric determination of DNA using nano-SiO2 particles as an effective dispersant and stabilizer for acridine orange[J]. Microchimica Acta, 2006, 156 (3-4):225-230.
    
    [97] Toki H, Sato Y, Tamura K, Kataoka F, Itoh S. Proceedings of the 3rd International Display Workshops[R], Japan, 1996: 919.
    [98]Kim J,Choi J H,Cheon C,Byun J.Luminescence characteristics of SrTiO3:Pr,Ga phosphor synthesized by sol-gel process[J].Ceramics International,2004,30:2029-2031.
    [99]Sertchook H,Avnir D.submicron silica/polystyrene composite particles prepared by a one-step sol-gel process[J].Chem Mater,2003,15(8):1690-1694.
    [100]Diallo P T,Jenlouis K,Bboutinaud P,et al.Improvement of the optical performances of Pr~(3+)in CaTiO_3[J]J Alloy Comp,2001,323:218-222.
    [101]杨志平,朱胜超,郭智,王文杰,pr~(3+)摩尔浓度对CaTiO_3:Pr~(3+)红色长余辉材料的影响[J]功能材料与器件学报,2002,9(4):473-476。
    [102]Park J,Ryu H,Park D,Choi S.Synthesis of SrTiO_3:Al,Pr phosphors from a complex precursor polymer and their luminescent properties[J],Journal of the European Ceramic Society,2001,21:535-543.
    [103]洪樟连,彭丽霞,张朋越,周时凤,王民权,补偿离子掺杂与烧成温度对SrTiO_3:0.002Pr~(3+)材料的红色发光特性的影响[J],发光学报,2005,26(4):497-501。
    [104]Senyshyn.A,Kraus.H,Mikhailik.V.B,Yakovyna.V.Lattice dynamics and thermal properties of CaWO_4[J],PHYSICAL REVIEW B,2004,70:214306.
    [105]Sokolenko EV,Zhukovskii VM,Buyanova ES,Krasnobaev YA.Luminescent properties of oxygen-disordered scheelite-structure tungstates:Ⅰ.Steady-state luminescence[J],Inorg mater,1998,34(5):499-502.
    [106]Zeming Q,Chaoshu Sh,Dongfang Zh,Honggao T,Tao L,The green emission and local structure of the scintillator PbWO_4[J],Physica B,2001,307:45-50.
    [107]Michael J,Richard C,luminescence of calcium tungstate crystals[J],J Chem Phys,1974,61(10):4003-4111.
    [108]Campos.A.B,Simoes.A.Z,Longo.E,Varela J.Aet al.Mechanisms behind blue,green,and red photoluminescence emissions in CaWO4 and CaMoO4powders[J],APPLIED PHYSICS LETTERS,2007(91):051923.
    [109]Stouwdam.J W.van V.F C.J.M,Near-infrared Emission of Redispersible Er~(3+),Nd~(3+),and Ho~(3+)Doped LaF_3 Nanoparticles[J],NANO LETTERS,2002,2(7)733-73.
    [110]Kam.C.H,Buddhudu.S,Photoluminescence properties of Eu~(3+):ZrF_4-BaF_3-LaF_3-YF_3-AlF_3-NaF glasses[J],Physica B 2004,344:182-189.
    [111]张茂峰,孟建新,刘应亮等,水热法制备LaF_3:Ce,Tb纳米荧光粉及发光性质研究[J],光谱学与光谱分析,2007,27(2):232-235。
    [112]刘春棠,何大伟,李少霞等,稀土离子Ce,Tb掺杂硼磷酸锶荧光粉的发光性质[J],光谱学与光谱分析,2005,25(8):1203-1206。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700