用户名: 密码: 验证码:
早更新世北大西洋深海沉积物记录的千年尺度气候变化周期研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过去全球环境变化过程和机制的研究,对于认识未来气候环境的变化有重要的意义。深海沉积物具有沉积剖面连续、后期干扰少、气候信息丰富及对比性强等优点,在揭示气候变化方面发挥巨大的作用,被越来越广泛地用于古气候研究。北大西洋地区被认为是全球气候变化的驱动区,在这个特殊区域,通过冰、气、水的相互作用和影响,引发了全球性的大规模和大尺度的气候变化。关于千年尺度的起源研究,最早起源于北大西洋,因此它是一个首选的不可替代的理想的研究区域。
     本研究选取北大西洋306航次SiteU1313的样品,对1.5-1.7 Ma的钻芯进行粒度分析和矿物成分分析,并根据粒度参数变化规律曲线进行小波分析,发现了千年尺度周期的存在。全文共分六部分:
     第一部分:介绍论文选题的目的和意义,及国内外千年尺度气候变化研究进展以及古海洋学研究进展;
     第二部分:介绍区域研究概况;
     第三部分:对样品的实验分析方法以及数据处理方法进行了介绍;
     第四部分:介绍粒度各参数变化规律及所指示的环境意义;
     第五部分:通过矿物成分分析初步推断出沉积物的来源;
     第六部分:根据粒度变化规律,发现了千年尺度周期的存在;
     通过研究,得出以下主要结论:
     (1)整个剖面平均粒径为2.05μm,中值粒径为0.84μm,属于黏土级范围,说明水动力条件较稳定(弱)。整个剖面平均偏度为-0.42,极负偏,表明沉积物偏细,分布主要集中在细颗粒部分。整个剖面平均标准偏差为1.48,分选性差,表明当时的水动力条件稳定。峰度值的大小与物源、沉积环境都有关系,整个剖面平均峰度为0.72,峰度平坦,说明沉积物未经改造就进入新环境,而新环境对它的改造又不明显。因此,它可能代表几个源区的物质(总体)直接混合而成。
     (2)整个剖面的黏土(<4μm)含量平均达到82.39%,粉砂(4-63μm)含量平均为17.61%。粉砂中又以细粉砂(8-16μm)为主,平均含量为14.19%,粗粉砂(31-63μm)平均含量仅占到0.1%。岩芯黏土(<4μm)含量较高,在59-88%之间,平均含量为82.39%。极细粉砂(4-8μm)含量在10%-22%之间,平均含量为14.2%。细粉砂(8-16μm)在2-15%之间,平均含量为3.3%。中粉砂(16-31μm)平均含量为0.1%。深度在77.84-78.28m,82.52-82.68m,83.05-83.41m处,中粉砂含量全为零,说明该段沉积环境较稳定。72.45-73.13m黏土含量相对较低,极细粉砂、细粉砂、中粉砂含量相对较高,说明沉积环境不稳定,水动力条件较强。深度在82.80-83.33m黏土含量较高,平均含量在80%以上,细粉砂、中粉砂含量较低,个别段位中粉砂含量全为零,说明该段沉积环境稳定,水动力条件弱。
     (3)矿物组成与沉积物类型、物源和水动力条件有关。石英、长石出现的几率较多,云母等其他矿物出现的几率较小,说明主要的矿物组成是石英和长石。石英和长石都是从陆源搬运过来的物质。粒度分布曲线多呈双峰,表明了沉积物是两种来源。而通过涂片观察,发现沉积物的主要来源于陆源和海洋自生的物质,更好的证明了沉积物是两种来源的结论。
     (4)通过小波分析,发现在1.522-1.540 Ma段存在2.11ka、3.04ka、6.79ka的气候波动周期,在此段6.79ka的周期最显著;1.540-1.551 Ma段发现了2.09ka、3.98ka、10.05ka、13.20ka的气候波动周期,10.05ka的周期最显著,代表了此段的主周期;1.599-1.620 Ma段发现了1.04ka、5.00ka、7.93ka的气候波动周期,5.00ka、7.93ka的周期显著,代表了此段的主周期;1.683-1.706 Ma段发现了2.76ka、5.17ka、8.28ka、21.04ka、21.73ka的气候波动周期,21.04ka周期最显著,代表了此段的主周期,其主要周期是万年尺度;1.707-1.742 Ma段发现了2.33ka、3.88ka、12.94ka的气候波动周期,12.94ka的周期最显著,代表此段的主周期。对其尺度在时域上放大可以发现,1.526-1.530 Ma发现了约2.11ka周期的存在;1.530-1.536 Ma发现了约3.04ka周期的存在;1.683-1.686 Ma,1.691-1.697 Ma,1.702-1.705 Ma发现了约2.76ka周期的存在;1.713-1.715 Ma,1.717-1.719 Ma,1.730-1.732 Ma,1.735-1.739 Ma发现了2.33ka周期的存在。
To realize the evolution of climate and environment in the future more clearly, it is important to explore and analyze the processes and mechanism of the environment changes in the past. It is of advantage to reveal climate changes with deep-sea sediment for its continuous deposition profile, less post-interference,richness in bearing climate information and strong contrasts. It is more widely used in paleoclimate research and is the ideal platform for short-term climate study. North Atlantic region is the driver of the global climate change. In this particular region, the interaction of the ice, gas, water brings about a worldwide large scale climate change. The original research of millennial-scale climate change is carried out in North Atlantic firstly, which is an irreplaceable and ideal research area.
     The samples in this paper were selected from siteU1313 on Expedition 306 in North Atlantic. The grain size and mineral composition of the sample (1.5Ma-1.7Ma) were measured, and then wavelet analysis was carried out on the base of the curve of grain size parameters. It is demonstrated the existence of the millennial scale climate change cycle. There are six parts in the paper:
     PartⅠThis part mainly introduces the purpose and significance of the study. Both domestic and overseas research progress on the millennial scale climate change and paleooceanography are depicted briefly.
     PartⅡThis part generally introduces the natural condition of the research area.
     PartⅢThis part introduces the experimental analysis methods and the data processing methods.
     PartⅣThis part on the base of the grain size of the parameters change curve,reveals the significance of the environment.
     PartⅤWith the help the minerals in the samples, the source of the sediment is inferred.
     PartⅥAccording to the environmental significance of the change of the sample’s grain parameters, the millennial scale climate change cycle is discovered.
     Main conclusions are as follows:
     1 The whole profile’s mean grain diameter is 2.05μm, median grain diameter is 0.84μm. The sample’s composition shows it’s a type of clay, indicating that hydrodynamic conditions is stable (or weak). The average skewness is -0.42, which is extremely negative, indicating that the sediment is mainly concentrated in fine grains. The average standard deviation is 1.48, showing it is poorly selected, which also proves the hydrodynamic conditions is stable (or weak). Peaks have correlation with mineral’s source and deposition environment. The whole profile’mean peak value is 0.72 in a flat form showing that the sediment came into the new environment without obvious transformation. So it may be a mixture of several mineral sources.
     2 The clay content of the sample is 82.39% of and that of silt is 17.61%. Fine silt in the sand takes an average level of 14.19%, while coarse silt only takes 0.1%. Clay in the core of the sediment(<4 um) takes up 59% to 88% of the whole content, with its average as 82.39%. Fine silt takes10% -22%, with an average of 14.2%. Fine sand takes 2-15%, with an average of 3.3%. An average of silt content is 0.1%. There’s no trace of silt in depth of 77.84-78.28 m, 82.52-82.68 m, 83.05-83.41 m, showing that the sediment environment is comparatively stable. A relatively low level of clay content in depth of 72.45-73.13m and high level of fine silt, powder sand and silt content proves the depositional environment is instable, with critical hydrodynamic conditions. The high content of clay is found in the depth of 82.80-83.33 m, with an average content ratio more than 80%, while powder sand, silt content are comparatively low in the content of the profile, and no traces of silt , which shows that the depositional environment is stable, and hydrodynamics is weak.
     3 Mineral composition is correlated with the type, source and hydrodynamics of sediment. Quartz and feldspar , terrigenous material, take more in the content of the profile, indicating that they are the main mineral. While mica is less in the sediment. Both quartz and feldspar are of terrigenous material .Grain size distribution curve shows that they have two peaks, which indicate two sources of sediment. Smear slides indicate that the main source of sediment is from both terrigenous and marine materials.
     4 Wavelet analysis identifies that, in band 1.522-1.540 Ma, 2.11 ka, 3.04 ka, 6.79 ka climate cycles are found during this cycle, 6.79 ka is most notable; for 1.540-1.551 Ma, the cycles is at 2.09 ka, 3.98 ka, 10.05ka, 13.20ka, with 10.05ka the most significant, which represents the main cycle. For 1.599-1.620 Ma, at 1.04ka, 5.00 ka, 7.93ka, 5.00 ka, and it is significant at 7.93 ka, which is the main cycle. For 1.683-1.706 Ma, they are 2.76 ka, 5.17ka, 8.28ka, 21.04ka, 21.73 ka, with 21.04ka as the most significant main cycle. For 1.707-1.742 Ma, they are 2.33 ka, 3.88 ka, 12.94 ka, with 12.94ka as the main cycle. By enlarging on their respective time domain, the author finds out the for 1.526-1.530 Ma there’s a cycle at 2.11 ka; for1.530-1.536 Ma at 3.04 ka; for1.683-1.686Ma ,1.691-1.697 Ma , and 1.702-1.705 Ma, the cycles are at 2.76 ka; for 1.713-1.715Ma ,1.717-1.719 Ma ,1.730-1.732 Ma,1.735-1.739 Ma, the cycle exists at 2.33 ka.
引文
[1] Wdliams[0],M.A.J.,Dunkerley,D.L.,Deckker,P.D.et al 著,刘东生等编译.第四纪环境.北京:科学出版社,1997.
    [2] Martinson,D.G.,Pisisa, N.G.,Hays ,J. D. et al.Age dating and orbital theory of the ice age:Development of a high-resolution 0-3000000a chronstratigraghr[J] . Quaternary research.1987(27):1-29.
    [3] Heinrich,H.Origin and Consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130000 years.Quat.Res,1988(29) :142-152.
    [4] 黄春长.晚冰期 Younger Drya:环境突变.地球科学进展[J].1998,13(4);356-361.
    [5] deMenocal,P.,Ortiz,J.,Guilderson,T et al.Coherent high and low-latitude climate variability during the Holecene warm period[J].Science,2000,288:2198-2202.
    [6] Tada,R.,Irino,T.,Koizumi,I..Land-ocean linkages over orbital and millennial timescales recorded in late Quaternary sediment of the Japan Sea.Paleoceanography,1999,14,236-247.
    [7] Bond,G.,Showers,W.,Elliot,M. et al .North Atlantic’s 1-2kyr climate rhythm:relation to Heinrich events,Dansgaard/Oescher cycles and the Little Ice Age.In Clark,P.U.,Webb,R.S.,and Keigwin,L.D.(Eds.),Mechanisms of Global climate Change at Millennial Time Scales.Geophys.1999,112:35-58.
    [8] Saches,J.P.,Lehman,S.J..Subtropical north Atlantic temperatures 60000 to 30000 years ago[J].Science,2000,290:1947-1951.
    [9] Oppo,D.W.,McManus,J.F.,Cullen,J.L..Abrupt climate events 500,000 to 340,000 years ago:evidence from subpolar North Atlantic sediments.Science,1998,279:1335-1338.
    [10] McManus,J.F.,Oppo,D.W.,Cullen,J.L..A 0.5 million year record of millennial-scale climate variability in the North Atlantic.Science,1999,283:971-975.
    [11] Poli,M.S.,Thunell,R.C.,Rio,D..Millennial-scale changes in North Atlantic Deep Water circulation during marine isotope Stage11 and 12:linkage to Antarctic climate.Geology,2000,28:807-810.
    [12] Channell,J.E.T.,Sato,T.,Kanamatsu,T. et al. North Atlantic climate.IODP Sci.Prosp.,2004,303/306.http://iodp.tamu.edu/publications/SP/303306SP306306SP.PDF.
    [13] Jian Z,Wang P,Saito Y,et al. Holocene variability of the Kuroshio current in the Okinawa Trough northwestern Pacificocean[J].Earth and Planetary Scince Letters,2000,184(1):305-319.
    [14] Bond ,G.,Showers,W.,Cheseby,M. et al.A pervasive millennial-scale cycle in north Atlantic Holocene and glacial climates[J].Science,1997,278:1257-1266.
    [15] Raymo ,M .E.,Ganley ,K.,Carter, S.,et al.Millennial-scale climate instability during the early Pleistocene epoch[J].Nature,1998,392:699-702.
    [16] 汪品先等.西太平洋边缘的“新仙女木”事件[J].中国科学(D 辑),1996,26(5 ):452-460.
    [17] 王汝建等.冲绳海槽南部 20Ka 来的放射虫的古海洋学意义[J].中国科学(D 辑).1996 ,28 (2):131- 136.
    [18] LiuZ.X,et al .Studies on late Quatenrary paleoceanography in millennium scale In the Okinawa Trough.Science Bulletin,1999,44(8):883-887.
    [19] 黄维,翦知泯,C Buhring.南海北部 ODP1144 站颜色反射率揭示的千年尺度气候波动[J].海洋地质与第四纪地质,2003,23(3):5-8.
    [20] 金海燕,翦知湣.南?辈?1144 站中更新世气候转型期有孔虫稳定同位素古气候意义[J].地球科学进展,2007,22(9):914-920.
    [21] Porter,S.C.,An Zhisheng. Correlation between climate events in the North Atlantic and China during the last glaciation.Nature,1995,375:305-308.
    [22] Lu,H.,van Huissteden,K.O.,An,Z.et al . East Asia winter monsoon variations on a millennial time-scale before the last glacial-interglacial cycle.J Quaternary Sci.,1999,14:101-110.
    [23] Wang,Y.,Cheng,H.,Edwards,R. et al . A High-Resolution Absolute-DatedLate Pleistocene Monsoon Record from Hulu Cave,China.Science,2001,294:2345-2348.
    [24] Wang,Y.,Cheng,H.,Edwards,R.L.et al. The Holocene Asian Monsoon:Links to solar changes and North Atlantic climate.Science,2005,308:854-857.
    [25] 鲜锋,周卫健,于学峰,等.高原泥炭记录揭示的全新世季风快速变化[J].海洋地质与第四纪地质,2006,26(1):41-44.
    [26] 钟巍,薛积彬,甄治国,等.雷州半岛北部晚更新世晚期气候环境变化的泥炭沉积记录[J].海洋地质与第四纪地质,2007,27(6):98-102.
    [27] 刘嘉麒,吕厚远,J.Negendank,等.湖光岩玛饵湖全新世气候波动的周期性[J].科学通报,2000,45(11):1190-1194.
    [28] 周静,王苏民,杨桂山,等.新仙女木事件及全新世早中期降温事件—来自洱海湖泊沉积的记录[J].气候变化研究进展,2006,2(3):127-130.
    [29] 方修琦,葛全胜,郑景云,等. 全新世寒冷事件与气候变化的千年周期[J].自然科学进展,2004,14(4):456-461.
    [30] 丁仲礼,任剑璋.最后两个冰期旋回季风-沙漠系统不稳定性的高分辨率黄土记录[J].第四纪研究,1999,1:49-58.
    [31] 陈发虎,朱艳,李吉均.民勤盆地湖泊沉积记录的全新世千百年尺度夏季风快速变化[J].科学通报,2001,46(17):1417-1418.
    [32] 方小敏,潘保田,管东红,等.兰州约 60 ka 以来夏季风千年尺度不稳定性研究[J].科学通报,1999,44(4):436-439.
    [33] 刘传联.追溯北大西洋气候的千年周期—记综合大洋钻探 303 航次[J].地球科学,2005,30(1):30-31.
    [34] http://www.iodp.cn/chs/html/2006/10/20061020194835-1.htm.
    [35] 翟秋敏.IODP306 航次研究成果简报[J].海洋地质与第四纪地质,2005,(4):46-54.
    [36] http://publications.iodp.org/proceedings/303_306/EXP_REPT/CHAPTERS/306_112.PDF .
    [37] 吕华华.赤道北太平洋黏土沉积物的标型特征及其应用研究[D].中国科学院海洋研究所博士论文.
    [38] 成都地质学院陕北队编.沉积岩(物)粒度分析及其应用[M].北京:地质出版社:44-54.
    [39] 类延斌,张成君,尚华明,等.青藏高原东北部希门错湖岩心粒度特征及其环境意义[J].海洋地质与第四纪地质,2006,26(3):32-33.
    [40] Friedman,G.M.,Sanders,J.E.著,徐怀大,陆伟文译.沉积学原理[M].北京:科学出版社,1982.
    [41] 何良彪,刘秦玉.黄河与长江沉积物中粘土矿物的化学特征[J]科学通报,1997,429(7):730-734.
    [42] SINGER , A. . The paleoclimatic interpretation of clay minerals in sediments-a review[J].Earth-Science Res,1984,21:251-293.
    [43] 汤艳杰,贾建业,谢先德.粘土矿物的环境意义[J].地学前缘,2002,9(2):337-339.
    [44] PATEEP,M.A..The distribution of caav minerals in the ocean[J].Sedimentoloty,1969, 13:21-43.
    [45] 陈涛,王河锦,张祖青,等.浅谈利用黏土矿物重建古气候[J].北京人学学报(自然科学版),2005,41(2):310-311.
    [46] 颜文,陈忠,王有强,等.南海 NS93-5 柱样的矿物学特征及矿物沉积序列[J].矿物学报,2000,20(2):143-149.
    [47] 同济大学海洋地质系海洋地质教研室编.海洋地质学[M].地质出版社室 248-249.
    [48] 辛春英,何良彪,王慧艳.黄河口及其近岸区的黏土矿物[J].黄渤海海洋,1998,16(4):23-27.
    [49] Chamley,H..Long-term trends in clay deposition in the ocean[J].Ocean.Acta,1981(Spec):105- 110.
    [50] 金秉福,林振宏,杨群慧,等.沉积矿物学在陆缘海环境分析中的应用[J].海洋地质与第四纪地质,2002,22(3):113-114.
    [51] 初凤友,陈丽蓉,申顺喜,等.南黄海自生黄铁矿成因及其环境指示意义[J].海洋与湖沼,1995,26(3):227-233.
    [52] 宋春青,张振春.地质学基础[M].北京:人民教育出版社,1978:85-87.
    [53] 王琦,朱而勤.海洋沉积学[M].科学出版社,1989:232-235.
    [54] Bond Gerard C,Lotti,Rusty.Iceberg Discharges into the North Atlantic on Millennial Time Scales During the Last Glaciation[J].science,1995:1005-1010.
    [55] 现代数学手册·计算机数学卷[M].武汉:华中科技大学出版社,2000: 347-348.
    [56] 董长虹.Matlab 小波分析工具箱原理与应用[M].北京:国防工业出版社,1-2.
    [57] 刘俊萍,田峰薇,黄强,等.基于小波分析的黄河河川径流变化规律研究[J].自然科学进展,2003(13):383-387.
    [58] 薛宇峰.近 50 年来湛江、韶关气候变化的小波分析[J].广东气象,2006,(1):29-32.
    [59] 鹿化煜,K V Huissteden,安芷生,G Nugteren ,J Vandenberghe.早、中更新世东亚冬季风强度的快速变化[J].海洋地质与第四纪地质,1999,19(2):75-81.
    [60] Sirocko,F.,Garbe- SchOberg D,M cIntyre A et al.Teleconnections between the subtropical monsoons and high-latitude climates during the last Deglaciation. Science,1996, 272:526- 529.
    [61] Mommcrslccg ,H J.,Lontre,M.F.,Baert,E..Orbital forcing and cyclic abrupt climatic change during the last 170000years. Evidence from high-resolution palynological records of the Colombian easter Cordillera. Thesis,University of Amslcnlam,1998,145-169.
    [62] Molfino,B.,Heusser,L.H.,Woillard,G.M..Frequency components of a Grande Pile problem record: evidenc of preces-sional orbital forcing.In Berger A,J Imbrie,J Hays,G Kukla, B Saltzman(eds.)Milankovitch and Caimale. Reidel,DordrechT Holland,1985,391-404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700