用户名: 密码: 验证码:
脉搏波分析与人体动脉血压关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类进入老龄化的时代已经来临,高血压作为在心脑血管疾病方面死亡率最高的因素而成为国际研究焦点之一。配合传统纯粹药物的治疗,精确的进行血压以及相关心血管生理学参数测量,对人体心血管系统的预诊以及健康人群疾病的预防有更加重要的意义。无创血压检测方法可以避免有创血压检测产生的感染,其装置又可以具有便携特性和高精度,而且特别适合于随时观察被试者血压的变化。基于此,近年来无创血压检测方法成为国际研究热点之一。
     脉诊已经有很久的发展历史了,即中医四诊(望、闻、问、切)中的切脉,为中医辨证理论中最重要一环。当今,将脉诊中的人体脉搏波形拾取出来,以现代医学视角,作为评价人体心脑血管生理特性依据的方法被广泛采用。脉搏波传导速度(Pulse Wave Velocity-PWV)与动脉血压关系的研究可以追溯到二十世纪二十年代,并且与PWV呈线性反比关系的脉搏波传导时间(Pulse Transit Time-PTT)在测量人体每搏动脉血压方面又具有较好的简便性;始于二十世纪七十年代的对单一脉搏波波形进行分析与研究,属于该领域比较新的方向定位,具有一定的可行性;而八十年代以来的对脉搏波进行在频域范围内的分析多数集中在功率谱研究上,也取得了一定的成果。此类研究脉搏波特性与人体动脉血压的关系,为实现无创连续每搏血压检测奠定了坚实的基础。
     本课题中,我们提出了一种基于单一脉搏波形傅立叶分析(FFT)的频率幅值与人体血压关系的研究方案。一系列相关实验结果表明,此方法不仅具有较高的精度,而且在进一步改进无创血压测试系统简便性方面具有明显优势。经典数学方法──快速傅立叶变换──引用至此方案中,它可以将脉搏信号由时域变换到频域。虽然该方案是无创血压检测领域新研究方向的初步探索,但为无创血压测试实验定量化研究打下良好基础。相信它很可能会扩展无创血压测试的应用领域,如移动血压测试装置和心血管预诊。
Human being has been in the aging times. In the recent two decade it was one of world-wide research focus on Hypertension as the factor of maximum mortality in the aspect of cardiovascular diseases. Accurately detecting blood pressure and vascular physiological parameters of human body under the noninvasive mode, combining with the traditional medicine treatment only, is more significant for the pre-diagnosis of cardiovascular system and disease prevention among the healthy cohorts. The method of noninvasive detection of blood pressure, which is capable to avoid the infections from invasive mode and form the portable and high accurate device, is especially suitable for observing the subjects’changes of blood pressure at any time. Therefore in the recent years this method has been one of research hot spots all over the world.
     It had a long history for Pulse Diagnosis, namely Pulse Feeling, and was the most important links among the dialectical theories in Chinese Medicine. Nowadays as a method to assess the cardiovascular physiological characteristics the pulse waveform comprehended from the dimension of Modern Medicine has been using in a world-wide range. The research on the relationship between Pulse Wave Velocity and Arterial Blood Pressure can be traced back to 1920’s. And it showed potential in the aspect of convenience in detecting Arterial Blood Pressure per pulse for utilizing Pulse Transit Time method, which reversely correlated with Pulse Wave Velocity. Since 1970’s it held a good feasibility assessed as a new direction for the anaylsis and research on single pulse waveform in this field. And it mostly forcused on the studies on Power Spectrum and was productive for the analysis on Pulse Waveform in frequency-domain from the beginning of 1980’s. These research directions of the correlation between the characteristic of Pulse Wave and Arterial Blood Pressure laid a solid foundation for Noninvasive Continuous Detection of Blood Pressure per pulse.
     In this paper, a newly developed direction of the relationship between the frequency amplitude of FFT analysis for single pulse waveform and Arterial Blood Pressure was introduced. A series of relevant trial results showed that this method was not only highly accurate but also gave the obvious potential in the aspect of convenience in improving on Noninvasive Detection of Blood Pressure system further. The classical mathematical technique, Fast Fourier Transformation which can transform the pulse signal from time-domain to frequency-domain, was utilized in this project. And this pilot exploration for the novel direction bulit a good foundation for the quantitative research of Noninvasive Detection of Blood Pressure. It is convinced that this method is likely to broaden its application range, such as wearable device for Arterial Blood Pressure monitoring and preliminary examination.
引文
[1] 汤池.利用脉搏波无创连续检测血压的实验研究:[硕士学位论文].西安:第四军医大学,2005.1
    [2] 齐颂扬.医学仪器(上).北京:高等教育出版社,1996.48-50
    [3] 龚茜玲主编.人体解剖生理学.北京:人民卫生出版社,2004.166-170
    [4] Ronney B. Panerai, Eelly Sammons, et al. Cerebral critical closing pressure estimation from Finapres and arterial blood pressure measurements in the aorta. Physiological Measurement. 2006; 27: 1387-1402
    [5] Allen Murray. Relation between heart rate and pulse transit time during paced respiration. Physiological Measurement. 2001; 22: 425-432
    [6] Andreas Janiff. The technique of invasive detection of blood pressure. Modern Medical Device. 2000; 39: 4004-4032
    [7] 徐克,周奇,韦云隆.无创血压测量.重庆工学院学报,2008,22(1):165
    [8] Eliudem G. Lima, Nelson Spritzer, et al. Noninvasive ambulatory 24-Hour blood pressure in patients with high normal blood pressure and exaggerated systolic pressure response to exercise. Hypertension. 1995; 26: 1121-1123
    [9] 焦学军,房兴业.连续每搏血压测量方法的研究进展.航天医学与医学工程,2000,13(2):148-149
    [10] A. Kawarada. Ambulatory monitoring of indirect beat-to-beat arterial pressure in human by a volume compensation method. Medical & Biological Engineering & Computing January. 1991; 29: 55-62
    [11] K. Yamachoshi. Indirect measurement of instantaneous arterial blood pressure in the human finger technique. IEEE Transactions on Biomedical Engineering. 1980; 27: 150-155
    [12] K. Yamakoshi. Noninvasive measurement of beat-to-beat vascular viscoelastic properties in human fingers and forearms. Medical & Biological Engineering & computing. 1985; 23: 43-47
    [13] Brian Gribbin. Pulse wave velocity as a measure of pressure change. Psychophysiology. 1976; 13: 87-90
    [14] Andrew Steptoe. Pulse wave velocity and blood pressure change: calibration and application. Psychophysiology. 1976; 13: 489-493
    [15] 陆渭明.对利用脉搏波传播速度间接测量血压时主要影响因素的研究.中国生物医学过程学报,1995,14(1):88-93
    [16] 胡章和.孕妇血压与脉搏波的相关性研究与应用.生物医学工程杂志,1995,12(2):162-164
    [17] 罗志昌.脉搏波波形特征信息的研究.北京工业大学学报,1996,22:71-79
    [18] 向海燕,俞梦孙.用脉搏波传导时间实现血压连续测量.医疗卫生装备,2006,27(2):19-21
    [19] 瞿年清,谢梦洲.脉搏波形释义.中国中医药信息杂志,2007,14:3-4
    [20] 袁肇凯.中医诊断实验方法学.北京:科学出版社,2003.77-79
    [21] 王炳和,杨敬林.脉搏系统建模于脉象信息分析的研究进展.生物医学工程学杂志,2002,19:329
    [22] Simone Pola. Estimation of the power spectral density role of the time-frequency representations (FTR). IEEE Trans BME. 1996; 43: 46
    [23] 刘广斌,樊小丽,黄洛秀.良种滑脉患者与健康妇女指端溶剂脉搏波的功率谱分析.西安医科大学学报,1990,11(3):201
    [24] 乜国荃,方祖祥.不同年龄段人体脉搏波的测量与分析.上海生物医学工程,2007,28(2):76-80
    [25] 李云雁,胡传荣.试验设计与数据处理.北京:化学工业出版社,2005.44-51
    [26] Kawai H. The piezoelectricity of polyvinylidene fluoride. App. Physics. 1969; 8: 975-979
    [27] Ke Xu, Qi Zhou, Huifeng Yang. A novel method reflecting arterial blood pressure changes based on FFT analysis for single pulse waveform. In Proceedings of the 2nd International Conference on Bioinformatics and Biomedical Engineering (iCBBE2008), Shanghai, 2008
    [28] 何循来.高性能八位单片机 AT89C51.军械工程学院科技开发办公室半导体技术,1997,(04):62-64
    [29] 林申茂.8051 单片机彻底研究基础篇.北京:人民出版社,2005.157-173
    [30] 许建军.MCS-51 系列单片机应用及接口技术.北京:人民邮电出版社,2003.144-145
    [31] 李勋.单片机原理及应用.北京:舰空航天大学出版社,2001.253-257
    [32] 陈明荧.8051 单片机基础教程.北京:人民邮电出版社,2003.98-100
    [33] 向先波,徐国华,张琴.Matlab 环境下 PC 机与单片机的串行通信及数据处理.2004,12,27-28
    [34] Jong Yong Abdiel Foo, Chu Sing Lim. Dual-channel photoplethysmography to monitor local changes in vascular stiffness. Clinical Monitoring and Computing. 2006; 20: 223-224

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700