用户名: 密码: 验证码:
花后渍水对不同品质类型小麦籽粒产量和品质形成的影响及其生理机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渍水是我国小麦生产的主要自然灾害之一,生育中后期渍害显著影响了小麦产量品质的形成。明确花后渍水对小麦籽粒产量和品质形成的影响及其生理机制对于深化小麦产量品质生理生态研究和指导小麦抗逆调优栽培具有重要的理论意义和应用前景。本研究在盆栽条件下,以蛋白质含量不同的小麦品种扬麦9号(低蛋白)、豫麦34(高蛋白)为研究材料,设置对照(相当于田间持水量的70~80%)和渍水(保持1~2cm的水层)两个水分处理,研究花后渍水对小麦旗叶光合和衰老特性,碳氮代谢,根系衰老特性及产量品质形成的影响,进一步明确花后渍水对小麦籽粒产量品质形成的影响及其生理机制。主要研究结果如下:
     1.花后渍水对小麦旗叶光合、衰老特性及干物质转运的影响。渍水显著降低了旗叶叶绿素含量、气孔导度、蒸腾速率和旗叶净光合速率,且豫麦34较扬麦9号下降幅度大。最大光化学效率、PSⅡ潜在活性、实际光化学效率及光化学猝灭在渍水下显著下降,同时初始荧光强度和非光化学猝灭显著上升,表明PSⅡ光反应中心遭到破坏。超氧化物歧化酶、过氧化物酶及豫麦34过氧化氢酶(POD)活性在溃水下显著降低,而扬麦9号POD活性则呈主要上升趋势。渍水条件下,花后植株干物质积累量降低以及籽粒灌浆速率的下降,使籽粒干物质积累量减少。
     2.花后渍水对小麦素吸收转运的影响。渍水降低了两小麦品种叶片、茎鞘、全株及籽粒含量和积累量;增加了营养器官成熟期素分配量,降低了籽粒素分配。扬麦9号营养器官花前贮藏素运转量和豫麦34营养器官花前贮藏素运转率显著降低,花后素积累量均显著下降。
     3.花后渍水对小麦根系衰老特性的影响。花后渍水显著降低了小麦根系生物重及根系活力。渍水下根系质膜相对透性增大,MDA含量显著增加,保护酶CAT、SOD活性下降,而POD活性则显著提高。相关性分析结果表明,根活力、根干重、过氧化氢酶CAT及MDA含量均与碳氮代谢指标及产量呈一定的显著相关。
     4.花后渍水对小麦籽粒产量和品质的影响。渍水显著降低了籽粒千粒重,影响籽粒产量形成;增加了直链淀粉、醇溶蛋白含量,同时蛋白质含量、支/直比及谷/醇比降低;小麦干湿面筋含量有所增加,面筋指数、沉降值、降落值均下降。
     综上所述,花后渍水加快小麦旗叶和根系衰老进程,影响小麦素吸收、干物质积累及其转运,是导致渍水下小麦籽粒产量、蛋白质含量及淀粉含量差异的主要原因,渍水下小麦旗叶和根系抗氧化酶CAT、SOD和POD活性、根系活力及旗叶光合特性的下降是影响小麦产量品质形成的主要生理基础。
Soil waterlogging is major natural adversity in wheat production in China, and waterlogging during mid to late growth stage is a major factor of limiting grain yield and quality formation. Elucidating the physiological mechanism and regulation principles for grain yield and quality formation in wheat is of important significance for understanding grain yield and quality physiology and guiding cultural management in wheat under post-antheais waterlogging. The effects of waterlogging on grain yield and quality of two wheat varieties (Triticum aestivum L) differring in grain protein content including Yangmai 9 with low protein content and Yumai 34 with high protein content were studied in a pot culture experiment. Two water treatments were established from anthesis to maturity, i.e. soil relative water content maintaining at 70-80% as control, and maintaining 1-2 cm water layer above the soil as waterlogging treatment. The effects of post-anthesis waterlogging on photosynthesis and senescense of flag leaf, carbon and nitrogen metabolize, root characteristics and senescence, grain yield and quality formation in different wheat varieties. Here are the main results.
     1. Effects of post-anthesis waterlogging on photosynthesis, senescense of flag leaf and matter redistribution in wheat
     Waterlogging significantly reduced chlorophyll content, stomatal conductance, transpitation rates and photosynthetic rate, and Yumai 34 decreased much faster than Yangmai 9. Ratios of variable to maximum and variable to initial fluorescence, actual photosynthetic efficiency, and photochemical quenching were much lower, while initial fluorescence and non-photochemical quenching were much higher under waterlogging than in control, indicating damage to photosystemⅡ. Waterlogging decreased activities of superoxide dismutase and catalase in both cultivars, and activity of peroxidase (POD) in Yumai 34, while POD activity in Yangmai 9 was mostly increased. The obvious decrease in the amount of post-anthesis accumulated dry matter and kernel filling rate which was redistributed to grains, also contributed to the grain dry matter loss under Waterlogging.
     2. Effects of post-anthesis waterlogging on nitrogen assimilation and translocation in wheat
     Waterlogging reduced nitrogen content and accumulation of leaf, grain, plant, stem and sheath. Compared with CK, waterlogging increased distribution of nitrogen in vegetative organs, while reduced distribution of nitrogen in grain. Nitrogen translocation amount of pre-anthesis assimilate in Yangmai 9, nitrogen translocation rate of pre-anthesis assimilate in Yumai 34 and nitrogen post-anthesis assimilates accumulation in two wheat were significantly reduced under post-anthesis waterlogging.
     3. Effects of post-anthesis waterlogging on wheat root characteristics and senescence
     Post-anthesis waterlogging significantly reduced root weight and root activity. Compared with CK, waterlogging reduced the activities of protective enzymes as superoxide dismutase (SOD) and catalase (CAT) in root, while increased the content of malondiadhyde (MDA) and the activity of peroxidase (POD), thus enhanced root membrane lipid peroxidation. In addition, significant relativities between root activity, root weight, catalase (CAT), the content of malondiadhyde (MDA) and index of carbon and nitrogen metabolize, grain quality were observed.
     4. Effects of post-waterlogging on grain yield and quality in wheat
     Waterlogging significantly reduced grain 1000-kernel weight, grain yield, protein content, ratios of amylopectin to amylose content and glutelin to gliadin content, while increased amylose and protein content. Compared with CK, waterlogging increased grain flour wet and dry gluten, reduced gluten index, sedimentation volume and falling number.
     In conclusion, enhanced root and flag leaf senescence, decreased in nitrogen assimilate translocation and dry matter accumulation translocation were involved in the depressed grain yield, protein and starch content in wheat under waterlogging. Further studies revealed that depressed anti-oxidative enzyme activities, root activity and flag leaf photosynthetic characteristics were key physiological mechanisms in affecting the grain yield and quality formation under post-anthesis waterlogging.
引文
[1]李金才,常江,魏凤珍.小麦湿害生理及其与小麦生产的关系.植物生理学通讯,1997,33(4):304-312.
    [2]吕军.渍水对冬小麦生长的危害及其生理效应.植物生理学报,1994,20(3):221-226.
    [3]刘友良.水分逆境生理.北京:农业出版社,1992.
    [4]吉田美夫.水田种麦湿害的理论和实践.农业技术,1976,32(12):12.
    [5]时政文雄.关于麦类湿害的研究.日本作物学纪事,1950,20(1-2):171.
    [6]曹旸,蔡士宾,朱伟,等.国内外麦类作物耐湿性研究进展.国外农学-麦类作物,1996,6:48-49.
    [7]吴建国,刘淑芝,李芳荣,等.湿害对冬小麦生长发育及生理影响的研究[J].河南农业大学学报,1992,26(1):31-37.
    [8]朱旭彤,胡业正,马平福,等.小麦抗湿性研究——Ⅰ.小麦湿害的临界期.湖北农业科学,1993(9):3-7.
    [9]Cannell RQ,Belford RK,Gales K,et al.Effects of waterlogging at different stages of development on the growth and yield of winter wheat.J Sci Food Agric,1980,31:117.
    [10]周广生,梅方竹,周竹青,等.小麦孕穗期湿害对产量形状的影响.华中农业大学学报,2000,19(2):95-98.
    [11]邵孝候,俞双恩,马绍川,等。拔节孕穗期受渍对小麦干物质产量、矿质营养和品质的影响.灌溉排水,1995,14(3):16-19.
    [12]李金才,王晋,魏凤珍,等.孕穗期渍水逆境对冬小麦干物质积累与分配的影响.安徽农业大学学报,2000,27(4):325-327.
    [13]兰涛,姜东,谢祝捷,等.花后土壤干旱和渍水对不同专用小麦籽粒品质的影响.水土保持学报,2004,18(1):193-196.
    [14]曹广才,王绍中.小麦品质生态[M].北京:中国科学技术出版社,1994,89-92.
    [15]姜东,谢祝捷,曹卫星,等.花后干旱和渍水对冬小麦光合特性和物质运转的影响.作物学报,2004,30(2):175-182.
    [16]吕军,范浩定.浙江农业大学学报,1991,(增刊):85-95.
    [17]孙元敏,郭绍铮,张继林,等.小麦湿害与根际还原物质积累关系研究.江苏农业学报,1997,13(4):202-205.
    [18]周苏玫,王晨阳,贺德先,等.土壤渍水对冬小麦根系生长及营养代谢的影响.作物学报,2001,7(5):674-679.
    [19]王晨阳,马元喜,周苏玫,等.土壤渍水对冬小麦根系活性氧代谢及其生理活性的影响.作物学报,1996,22(6):712-719.
    [20]朱云集,马元喜,王晨阳,等.土壤水分逆境对冬小麦根系某些形态解剖结构及超微结构的影响.河南农业大学学报,1994,28(3):224-229.
    [21]汪宗立,丁祖性.小麦湿害及耐渍性的生理研究-Ⅱ.不同生育期土壤过湿对小麦某些生理过程的影响.江苏农业科学,1981,6:1-18.
    [22]汪宗立,丁祖性,娄登仪,等.小麦湿害及耐渍性的生理研究-Ⅱ.不同生育期土壤过湿对小麦某些生理过程的影响.江苏农业科学,1981,6:10-18.
    [23]薄元嘉,吴自强,曹旸,等.小麦品种耐湿性鉴定的初步探讨.江苏农业科学,1979,4:14-18.
    [24]李金才,魏凤珍,余松烈,等.孕穗期渍水对冬小麦根系衰老的影响.应用生态学报,2000,11(5):723-726.
    [25]闻瑞鑫,胡新民,凌炳镛,等.渍害对小麦的影响及受渍临界指标的探讨.中国农村水利水电(农田水利与小水电),1997,4:9-11.
    [26]姜东,陶勤南,张国平.渍水对小麦扬麦5号旗叶和根系衰老的影响.应用生态学报,2002,13(11):1519-1521.
    [27]Desai RM,Bhatia CR.Nitrogen uptake and nitrogen harvest index in durum wheat cultivars varying in their grain protein concentration.Euphytica,1978,27:561-566.
    [28]张继林,孙元敏,郭绍铮.高产小麦营养生理特性与高效施肥技术的研究[J].中国农业科学,1988,21(4):39-46.
    [29]凌启鸿,郭文善,彭永欣,等.小麦高产群体质量及其优化控制技术研究与应用研究报告[J].江苏农学院学报,1995,16(专辑):7-51.
    [30]杜金哲,李文雄,胡尚连,刘锦红.春小麦不同品质类型的吸收、转化利用及与子粒产量和蛋白质含量的关系[J].作物学报,2001,27(2):253-260.
    [31]常江,李金才.渍水对小麦氮磷钾营养效应的研究.土壤学报,1999,36(3):423-427.
    [32]魏凤珍,李金才,尹钧,等.不同生育时期根际土壤渍水逆境对冬小麦N、P、K素营养的影响.水土保持学报,2006,20(3):162-165.
    [33]魏凤珍,李金才,李磊,等.土壤渍水对孕穗期冬小麦氮磷钾营养的影响.农业资源与环境科学,2007,23(6):556-560.
    [34]傅前虎,李金才,雷鸣.孕穗期根际土壤淹水对小麦素代谢和产量的影响.安徽农业科学,2001,29(5):608-610.
    [35]李世清,王瑞军,张兴昌,等.小麦素营养与籽粒灌浆期素转移的研究进展.水土保持学报,2004,18(3):106-111.
    [36]Mackown ET,VanSanford DA,Zhang N.Wheat vegetative nitrogen compositional changes in response to redaled repro-ductive sink strength[J].Plant Physiol.,1992,99:1469.
    [37]孙振元,韩碧文,刘淑兰,等.小麦籽粒充实期素的吸收和再分配及6-氨基嘌呤的调节作用[J].植物生理学报,1996,22(3):258-264
    [38]李世娟,周殿玺,诸叶平,等.水分和肥运筹对小麦素吸收分配的影响[J].华北农学报,2002,17(1):69-75.
    [39]娄成后,王学臣.作物产量形成的生理学基础[M].北京:中国农业出版社,2001.
    [40]Simpson RJ,Lambers H,Dulling MJ.Nitrogen redistribution during grain growth in wheat(Trititcum aestivam L.) Ⅳ.Development of a quantitative model of the translocation of nitrogen to the grain[J].Plant Physiol.,1983,71(1):7-14.
    [41]魏凤珍,李金才,王成雨,等.孕穗至灌浆期土壤渍水对冬小麦N、P、K素含量和积累量的影响.安徽农业大学学报,2007,34(2):208-212.
    [42]Bidinger F,Muscrave R B,Fisher R A.Contribution of stcred preanthesis assimilate to grain yield in wheat and barley.Natwe,1997,270:431-433.
    [43]许大全,张玉忠,张荣铣.植物光合作用的光抑制,植物生理学通讯,1992,28(4):237-243.
    [44]张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444-448.
    [45]赵会杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用.河南农业大学学报,2000,34(3):248-251.
    [46]姜东,陶勤南,曹卫星.渍水对小麦节间水溶性水化合物积累与再分配的影响.作物学报,2002,28(2):230-234.
    [47]田敏,饶龙兵.植物细胞中的活性氧及其生理作用.植物生理学通讯,2005,41(2).
    [48]刘宛,胡文玉,谢甫绨,等.NaCl胁迫及外源自由基对离体小麦叶片O_2和膜脂过氧化的影响[J].植物生理学通讯,1995,31(1):26-29.
    [49]贺岩,李志岗,陈云昭,等.外源脯氨酸对盐胁迫下大豆离体胚再生植株生理特征及线粒体结构的影响[J].大豆科学,2000,19(4):314-319.
    [50]齐秀东,孙海军,郭守华.SOD-POD活性在小麦抗旱生理研究中的指向作用.植物生理科学,2005,21(6):230-232.
    [51]Boveris A.Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria[M].Orlando:Academicpress,1984,429.
    [52]魏炜,赵欣平,吕辉,等.三种抗氧化酶在小麦抗干旱逆境中的作用初探.四川大学学报(自然科学版),2003,40(6):1172-1175.
    [53]王晨阳,马元喜,周苏玫,等.土壤渍水对冬小麦根系活性氧代谢及生理活性的影响,作物学报,1996,22(6):712-719.
    [54]许长成,邹琦.大豆叶片旱促衰老及其膜脂过氧化作用的关系.作物学报,1993,(3):360-363.
    [55]蔡永萍,陶汉之,张玉琼.土壤渍水对小麦开花后叶片几种生理特性的影响.植物生理学通讯,2000,36(2):110-113.
    [56]伍泽堂,张刚元.脱落酸、细胞分裂素和丙二醛对超氧化物歧化酶活性的影响.植物生理学通讯,1990,(4):30-32.
    [57]Gollan T,Passioura JB,Munns R..Soil water status affects the stomatl conductance of fully turgid wheat and sunflower leaves.Aust J Plant Physiol,1986,13:459-464.
    [58]李金才,王晋,魏凤珍,等.孕穗期渍水逆境对冬小麦干物质积累与分配的影响.安徽农业大学学报,2000,27(4):325-327.
    [59]谢祝捷,姜东,曹卫星,等.花后干旱和渍水条件下生长调节物质对冬小麦光合特性和物质运转的影响.作物学报,2004,30(10):1047-1052.
    [60]范学梅,姜东,戴廷波,等.花后干旱和渍水逆境下素对小麦籽粒产量和品质的影响.植物生态学报,2006,30(1):71-77.
    [61]王振林,贺明荣,傅金民,等.源库调节对灌溉与旱地小麦开花后光合产物生产和分配的影响.作物学报,1999,25(2):162-168.
    [62]郭文善,施劲松,彭永欣,等.灌浆期高温对小麦光合产物运转的影响.核农学报.1998,12(1):21-27.
    [63]许为纲,吕金印.冬小麦抽穗始期标记~(14)C同化物分配与运转的研究.核农学报,1998,12(1):7-11.
    [1]Schumahcer,R.S.,Johnson,R.H.:Characteristics of U.S.extreme rain events during 1999-2003.Weather Fore.2006,21:69-85.
    [2]Garcia,J.A.,Gallego,M.C.,Serrano,A.,Vaquero,J.M.:Trends in block-seasonal extreme rainfall over the Iberian Peninsula in the second half of the twentieth century.J Climate.2007,20:113-130.
    [3]Belford,R.K.,Cannell,R.Q.:Effects of Waterlogging of Winter-Wheat Prior to Emergence on Crop Establishment and Yield.J Sci Food Agri.1979,30:340-340.
    [4] Cannell, R.Q., Belford, R.K., Gales, K., Thomson, R.J., Webster, C.R: Effects of waterlogging and drought on winter wheat and winter barley grown on a clay and a sandy soil. 1. Crop growth and yield. Plant Soil. 1984, 80: 53-66.
    [5] Musgrave, M.E.: Waterlogging effect on yield and photosynthesis in eight winter wheat cultivars. Crop Sci. 1994, 34:1314-1318.
    [6] Zhang, H., Turner, N.C., Poole, M.L., Simpson, N.: Crop production in the high rainfall zones of southern Australia - potential, constraints and opportunities. Aust J Exp Agr. 2006, 46: 1035-1049.
    [7] Blacklow, W.M., Incoll, L.D.: Nitrogen stress of winter wheat changed the determinants of yield and the distribution of nitrogen and total dry matter during grain filling. Aust J Plant Physiol. 1981,8:191-200.
    [8] Nicolas, M.E., Lambers, H., Simpson, R.J., Dalling, M.J.: Effect of drought on metabolism and partitioning of carbon in two wheat varieties differing in drought-tolerance. Ann of Bot. 1985,55:727-742.
    [9] Borrell, A.K., Incoll, L.D., Simpson, R.J., Dalling, M.J.: Partitioning of dry matter and the deposition and use of stem reserves in a semi-dwarf wheat crop. Ann Bot. 1989, 63: 527-539.
    [10] Huang, B., Johnson, J.W., Nesmith, S., Bridges, D.C.: Growth, physiological and anatomical responses of two wheat genotypes to waterlogging and nutrient supply. J Exp Bot. 1994, 45: 193-202.
    [11] Brisson, N., Rebiere, B., Zimmer, D., Renault, P.: Response of the root system of a winter wheat crop to waterlogging. Plant Soil. 2002, 243: 43-55.
    [12] Smethurst, C.R, Shabala, S.: Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Funct Plant Biol. 2003, 30: 335-343.
    [13] Jiang, Y.W., Wang, K.H.: Growth, physiological, and anatomical responses of creeping bentgrass cultivars to different depths of waterlogging. Crop Sci. 2006, 46: 2420-2426.
    [14] Baker, N.R.: A possible role for Photosystem Ⅱ in environmental perturbations of photosynthesis. Physiol Plant. 1991, 81: 563-570.
    [15] Sayed, O.H.: Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica. 2003,41:321-330.
    [16] Behera, R.K., Choudhury, N.K.: High irradiance-induced changes in carotenoid composition and increase in non-photochemical quenching of Chl a fluorescence in primary wheat leaves. J Plant Physiol. 2003,160:1141-1146.
    [17] Soja, G, Soja, A.M.: Recognizing the sources of stress in wheat and bean by using chlorophyll fluorescence induction parameters as inputs for neural network models. Phyton-Annales Rei Botanicae. 2005, 45:157-168.
    [18] Zhao, H.J., Tan, J.F.: Role of calcium ion in protection against heat and high irradiance stress-induced oxidative damage to photosynthesis of wheat leaves. Photosynthetica. 2005,43:473-476.
    [19] Hassan, I.A.: Effects of water stress and high temperature on gas exchange and chlorophyll fluorescence in Triticum aestivum L. Photosynthetica. 2006, 44: 312-315.
    [20] Ahmed, S., Nawata, E., Hosokawa, M., Domae, Y., Sakuratani, T.: Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci. 2002, 163:117-123.
    [21] Monneveux, P., Pastenes, C, Reynolds, M.P.: Limitations to photosynthesis under light and heat stress in three high-yielding wheat genotypes. J Plant Physiol. 2003, 160: 657-666.
    [22] Stepien, P., Klobus, G: Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol Plant. 2005, 125: 31-40.
    [23] Zhang, J., Kirkham, M.B.: Drought-stress-induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species. Plant Cell Physiol. 1994, 35: 785-791.
    [24] Mandhania, S., Madan ,S., Sawhney, V.: Antioxidant defense mechanism under salt stress in wheat seedlings. Biol Plant. 2006, 50: 227-231.
    [25] Zhao, H., Dai, T.B., Jing, Q., Jiang, D., Cao, W.X.: Leaf senescence and grain filling affected by post-anthesis high temperatures in two different wheat cultivars. Plant Growth Reg. 2007, 51: 149-158.
    [26] Gajewska, E., Sklodowska, M.: Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. Biometals. 2007a, 20: 27-36.
    [27] Gajewska, E., Sklodowska, M.: Relations between tocopherol, chlorophyll and lipid peroxides contents in shoots of Ni-treated wheat. J Plant Physiol. 2007b, 164: 364-366.
    [28] Kalashnikov, Y.E., Balakhnina, T.I., Bennichelli, R.P., Stepnevski, V., Stepnewska, Z.: Antioxidant activity and lipid peroxidation in wheat plants as related to cultivar tolerance to excessive soil moisture. Russ J Plant Physi. 1999, 46: 227-233.
    
    [29] Malik, A., Colmer, T.D., Lambers, H., Schortemeyer, M.: Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Aust J Plant Physiol. 2001, 28: 1121-1131.
    
    [30] Schliiter, U., Crawford, R.M.M.: Long-term anoxia tolerance in leaves of Acorus calamus L. and Iris pseudacorus L. J Exp Bot. 2001, 52: 2213-2225.
    [31] Smethurst, C.F., Garnett, T., Shabala, S.: Nutritional and chlorophyll fluorescence responses of lucerne(Medicago sativa) to waterlogging and subsequent recovery.Plant Soil.2005,270:31-45.
    [32]Pang,J.Y.,Zhou,M.X.,Mendham,N.,Shabala,S.:Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery.Aust J Agri Res.2004,55:895-906.
    [33]Khan,S.:Modification of ozone effects on photosynthetic capacity of winter wheat(Triticum aestivum L.cv.Perlo) at different levels of water availability.Water Air Soil Poll.2005,160:197-211.
    [34]Rizza,F.,Pagani,D.,Stanca,A.M.,Cattivelli,L.:Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats.Plant Breeding.2001,120:389-396.
    [35]Guidi,L.,Soldatini,F.:Chlorophyll fluorescence and gas exchanges in flooded soybean and sunflower plants.P Physiol Biochem.1997,35:713-717.
    [36]Garnczarska,M.,Bednarski,W.,Morkunas,I.:Re-aeration-induced oxidative stress and antioxidative defenses in hypoxically pretreated lupine roots.J Plant Physiol.2004,161:415-422.
    [37]Passardi,F.,Cosio,C.,Penel,C.,Dunand,C.:Peroxidases have more functions than a Swiss army knife.Plant Cell Rep.2005,24:255-265.
    [38]Hiraga,S.,Yamamoto,K.,Ito,H.,Sasaki,K.,Matsui,H.,Honma,M.,Nagamura,Y.,Sasaki,T.,Ohashi,Y.:Diverse expression profiles of 21 rice peroxidase genes.FEBS Letters.2000,471:245-250.
    [39]Passardi,F.,Penel,C.,Dunand,C.:Performing the paradoxical:how plant peroxidases modify the cell wail.Trends in Plant Sci.2004,9:534-540.
    [40]Takeda,T.,Yokota,A.,Shigeoka,S.:Resistance of photosynthesis to hydrogen peroxide in algae.Plant Cell Physiol.1995,36:1089-1095.
    [41]林植芳,李双顺,林桂珠,等.水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系.植物学报,1984,26(6):605-615.
    [42]王爱国,罗广华,邵从本,等.大豆种子超氧物歧化酶的研究.植物生理学报,1983,9(1):77-84.
    [43]Chance B,Maehly A C.Assays of catalase and peroxidase.Methods of Enzymology New York:Academic Press,1955,2:764.
    [44]张志良.植物生理学实验指导.北京:高等教育出版社,1995:15-157.
    [1]李金才等.小麦湿害生理及其与小麦生产的关系.植物生理学通讯,1997,33(4):304-312.
    [2]刘雅楠,曾孟潜.十个玉米推广种抗旱力的分析[J].华北农学报,1995,10(1):46-48.
    [3]景瑞莲.作物抗旱研究的现状与思考[J].干旱地区农业研究,1999,17(2):79-85.
    [4]王晨阳,马元喜,周苏玫,等.土壤渍水对冬小麦根系活性氧代谢及其生理活性的影响.作物学报,1996,22(6):712-719.
    [5]Musgrave M E,Waterlogging effects on yield and photosynthesis in eight wheat cultivars.Crop Sci.,1994,34:1314.
    [6]Cannell R Q,Belford R K,Gales K,et al.Effects of waterlogging at different stages of development on the growth and yield of winter wheat.J.Sci.Food Agric.,1980,31:117.
    [7]Stieger P A.Feller U.Nutrient accumulation and translocation in maturing wheat plants grown on waterlogging soil.Plant and Soil,1994,160:87.
    [8]石玉,于振文,王东,等.施量和底追比例对小麦素吸收转运及产量的影响.作物学报,2006,32(12):1860-1866.
    [9]李世清,王瑞军,张兴昌,等。小麦素营养与籽粒灌浆期素转移的研究进展.水土保持学报,2004,18(3):106-111.
    [10]傅前虎,李金才,雷鸣,等.孕穗期根际土壤淹水对小麦素代谢和产量的影响.安徽农业科学,2001,29(5):608-610.
    [11]魏凤珍,李金才,尹钧,等.不同生育时期根际土壤渍水逆境对冬小麦N、P、K素营养的影响.水土保持学报,2006,20(3):162-165.
    [12]XuZ Z(许振柱),WangC A(王崇爱),Li H(李晖).Effects of soil drought on photosynthesis,nitrogen and nitrogen translocation efficiency in wheat leaves.Agricultral Research in the Arid Areas(干果地区农业研究),2004,22(4):75-79(in Chinese).
    [13]Desai RM,Bhatia CR.Nitroge nuptake and nitrogen harvest index in durum wheat cultivars varying in their grain protein concentration.Euphytica,1978,27:561-566.
    [14]赵辉,戴廷波,姜东,等.高温下干旱和渍水对冬小麦花后旗叶光合特性和物质转运的影响.应用生态学报,2007,18(2):333-338.
    [15]ZhangQ J(张庆江),ZhangL Y(张立言),BiH W(毕桓武).The absorption,accumulation and translation Of nitrogen and their relationships to grain protein content in spring wheat variety.Acta Agron Sin(作物学报),1997,23(6):712-718(in Chinese with English abstract).
    [16]南京农业大学.土壤农化分析(第2版).北京:农业出版社,1992.
    [17]凌启鸿,郭文善,彭永欣,等.小麦高产群体质量及其优化控制技术研究与应用研究报告[J].江苏农学院学报,1995,16(专辑):7-51.
    [18]Kanwarpal S D,Waines J G.Analysis of nitrogen accumulation and use in bread and durum wheat[J].Crop Science.1989,29(9-10):1232-1239.
    [19]Schenk M K.Regulation of nitrogen uptake on the whole plant level[J].Plant and Soil,1996,181:131-137.
    [20]Hocking P J,Stapper M.Effects of sowing time and nitrogen fertilizer on canola and wheat,and nitrogen fertilizer on Indian mustard.Ⅱ.Nitrogen concentrations,N accumulation,and N fertilizer use efficiency[J]Australia J.of Agricultural Research,2001,52:635-644.
    [21]Hou Y L,O'Brien L,Zhong G R.Study on the dynamic changes of the distribution and accumulation of nitrogen in different plant parts of wheat[J].Acta Agronomica Sinica,2002,27(4):493-499.
    [22]米国华,汤利,张福锁.两种熟相小麦子粒建成期的素吸收与转运[J].中国农业大学学报.1999,4(3):53-57.
    [23]王月福,于振文,李尚霞,余松烈.土壤肥力和施量对小麦根系同化及子粒蛋白质含量的影响[J].植物营养与肥料学报,2003,9(1):39-44.
    [24]翟丙年,李生秀.水配合对冬小麦产量和品质的影响[J.植物营养与肥料学报,2003,9(1):26-32.
    [25]王月福,杜金哲,梁作正,等.不同种小麦素同化、转运和分配的比较研究.莱阳农学院学报,2006,23(3):191-195.
    [1]刘玲,沙奕卓,白月明.中国主要农业气象灾害区域分布与减灾对策.自然灾害学报,2003,12(2):92-97.
    [2]蔡士宾,曹旸,方先文,等.小麦灌浆期水渍和高温对植株早衰和籽粒增重的影响.作物学报,1994,20(4):457-464.
    [3]范雪梅,姜东,戴廷波,等.花后干旱和渍水下素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响.中国农业科学,2005,38(6):1132-1141.
    [4]吕军.渍水对冬小麦生长的危害及其生理效应.植物生理学报,1994,20(3):221-226.
    [5]王晨阳,马元喜,周苏玫,等.土壤渍水对冬小麦根系活性氧代谢及其生理活性的影响.作物学报,1996,22(6):712-719.
    [6]Kozlow skiT T.Flooding and Plant Growth.Orlando,Florida:Acad Press,1984:129-136.
    [7]阎素红,杨兆生,王俊娟,等.不同类型小麦品种根系生长特性研究.中国农业科学,2002,35(8):906-910.
    [8]WangZ L(汪宗立),DingZ X(丁祖性),LouD Y(娄登仪).Study on wet injury and wet tolerance of winter wheat Ⅱ.Effects of waterlogging of soil on physiological processes of wheat at different stages.Jiangsu Agric Sci(江苏农业科学),1984,6:1-8(in Chinese).
    [9]ZhuX T(朱旭彤),HuY Z(胡业正),MaP F(马平福) etal.Study on wet resistance of wheat Ⅰ.Waterlogging critical period of wheat.Hubei Agric Sci(湖北农业科学),1993,9:3-7(in Chinese).
    [10]李金才,魏凤珍,余松烈,等.安徽农业大学学报,1999,26(1):89-94.
    [11]李鲁华,陈树宾,孔祥丽,等.不同土壤水分条件下春小麦品种根系功能效率的研究.中 国农业科学,2002,35(7):867-871.
    [12]周苏玫,王晨阳,贺德先,等.土壤渍水对冬小麦根系生长及营养代谢的影响.作物学报,2001,7(5):674-679.
    [13]李金才,魏凤珍,余松烈,等.孕穗期渍水对冬小麦根系衰老的影响.应用生态学报,2000,11(5):723-726.
    [14]姜东,陶勤南,张国平.渍水对小麦扬麦5号旗叶和根系衰老的影响.应用生态学报,2002,13(11):1519-1521.
    [15]魏道智,宁书菊.拔节期追施肥对小麦根、叶衰老生理特性的影响.河北农业大学学报.2003,26(2):15-19.
    [16]Passardi,F.,Cosio,C.,Penel,C.,Dunand,C.:Peroxidases have more functions than a Swiss army knife.Plant Cell Rep.2005,24:255-265.
    [17]Hiraga,S.,Yamamoto,K.,Ito,H.,Sasaki,K.,Matsui,H.,Honma,M.,Nagamura,Y.,Sasaki,T.,Ohashi,Y.:Diverse expression profiles of 21 rice peroxidase genes.-FEBS Letters.2000471:245-250.
    [18]Passardi,F.,Penel,C.,Dunand,C.:Performing the paradoxical:how plant peroxidases modify the cell wall.-Trends in Plant Sci.2004,9:534-540.
    [19]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,125-128.
    [20]林植芳,李双顺,林桂珠,等.水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系.植物学报,1984,26(6):605-615.
    [21]王爱国,罗广华,邵从本,等.大豆种子超氧物歧化酶的研究.植物生理学报,1983,9(1):77-84.
    [22]Chance B,Maehly A C.Assays of catalase and peroxidase.Methods of Enzymology New York:Academic Press,1955,2:764.
    [23]张志良.植物生理学实验指导.北京:高等教育出版社,1995:15-157。
    [1]李志西,魏益民,张建国.小麦蛋白质组分与面团特性和烘焙品质关系的研究.中国粮油学报,1998,13(3):1-5.
    [2]杨学举,卢少源,张荣芝.小麦籽粒蛋白质组分与面包烘焙品质性状关系的研究.中国粮油学报,1999,14(1):1-5.
    [3]Wilks D S.Adapting stochastic weather generation algorithms for clim ate change study[J].Climate change,1992,22:67-84。
    [4]王月福,陈建华,曲健磊,等.土壤水分对小麦籽粒品质和产量的影响.莱阳农学院学报,2002,19(1):7-9.
    [5]朱旭彤,胡业正.小麦抗湿性研究.湖北农业科学,1993,(9):3-7.
    [6]南京农业大学.土壤农化分析(第2版).北京:农业出版社,1992.
    [7]吴建国,刘淑芝,李芳荣等.湿害对冬小麦生长发育及生理影响的研究[J].河南农业大学学报,1992,26(1):31-37.
    [8]周广生,梅方竹等.小麦孕穗期湿害对产量形状的影响.华中农业大学学报,2000,19(2):95-98,
    [9]吕军.渍水对冬小麦生长的危害及其生理效应.植物生理学报,1994,20(3):221-226.
    [10]周苏玫,王晨阳,贺德先,等.土壤渍水对冬小麦根系生长及营养代谢的影响.作物学报,2001,7(5):674-679.
    [11]王晨阳,马元喜,周苏玫,等.土壤渍水对冬小麦根系活性氧代谢及其生理活性的影响.作物学报,1996,22(6):712-719.
    [12]姜东,陶勤南,张国平.渍水对小麦扬麦5号旗叶和根系衰老的影响.应用生态学报,2002,13(11):1519-1521.
    [13]姜东,谢祝捷,曹卫星,等.花后干旱和渍水对冬小麦光合特性和物质运转的影响.作物学报,2004,30(2):175-182.
    [14]赵辉,戴廷波,姜东,等.高温下干旱和渍水对冬小麦花后旗叶光合特性和物质转运的影响.应用生态学报,2007,18(2):333-338.
    [15]王月福,于振文,李尚霞,等.施量对小麦籽粒蛋白质组分含量及加工品质的影响.中国农业科学,2002,35(9):1071-1078.
    [16]Pomeranz Y.Advanced in cereal science and technology[M].AACC.St.Paul.Mirmesta USA,1976:158-236.
    [17]姚大年,刘广田,朱金宝,等.基因型和环境对小麦品种籽粒性状及馒头品质的影响[J].中国粮油学报,2000,15(2):1-4.
    [18]姚大年.小麦淀粉性状和Waxy蛋白遗传及其与品质关系的研究[D].北京:中国农业大学,1998.
    [19]姚金保,姚国才,杨学,等.缺失不同Wx蛋白对普通小麦直链淀粉含量及淀粉特性的影响.麦类作物学报,2005,25(6):29-33.
    [20]孙学永,马传喜,林国平,等.普通小麦SDS沉淀值、蛋白质含量及GMP含量的相关性分析.安徽农业科学,2002,30(2):171-174.
    [21]兰涛,姜东,谢祝捷,等.花后土壤干旱和渍水对不同专用小麦籽粒品质的影响.水土保持学报,2004,18(1):193-196.
    [1]金善宝.中国小麦学.北京:中国农业出版社,1996.
    [2]王月福,陈建华,曲健磊,等.土壤水分对小麦籽粒品质和产量的影响.莱阳农学院学报,2002,19(1):7-9.
    [3]朱旭彤,胡业正.小麦抗湿性研究.湖北农业科学,1993,(9):3-7.
    [4]吕军.渍水对冬小麦生长的危害及其生理效应.植物生理学报,1994,20(3):221-226.
    [5]吴建国,刘淑芝,李芳荣,等.湿害对冬小麦生长发育及生理影响的研究[J].河南农业大学学报,1992,26(1):31-37.
    [6]朱旭彤,胡业正,马平福,等.小麦抗湿性研究——Ⅰ.小麦湿害的临界期.湖北农业科学,1993(9):3-7.
    [7]Cannell RQ,Belford RK,Gales K,et al.Effects of waterlogging at different stages of development on the growth and yield of winter wheat.J Sci Food Agric,1980,31:117.
    [8]周广生,梅方竹,周竹青,等.小麦孕穗期湿害对产量形状的影响.华中农业大学学报,2000,19(2):95-98.
    [9]兰涛,姜东,谢祝捷,等.花后土壤干旱和渍水对不同专用小麦籽粒品质的影响.水土保持学报,2004,18(1):193-196.
    [10]李金才,魏凤珍,余松烈,等.孕穗期渍水对冬小麦根系衰老的影响.应用生态学报,2000,11(5):723-726.
    [11]姜东,陶勤南,张国平.渍水对小麦扬麦5号旗叶和根系衰老的影响.应用生态学报,2002,13(11):1519-1521.
    [12]王晨阳,马元喜,周苏玫,等.土壤渍水对冬小麦根系活性氧代谢及其生理活性的影响.作物学报,1996,22(6):712-719.
    [13]孙元敏,郭绍铮,张继林,等.小麦湿害与根际还原物质积累关系研究.江苏农业学报,1997,13(4):202-205.
    [14]周苏玫,王晨阳,贺德先,等.土壤渍水对冬小麦根系生长及营养代谢的影响.作物学报,2001,7(5):674-679.
    [15]许长成,邹琦.大豆叶片旱促衰老及其膜脂过氧化作用的关系.作物学报,1993,(3):360-363.
    [16]蔡永萍,陶汉之,张玉琼.土壤渍水对小麦开花后叶片几种生理特性的影响.植物生理学通讯,2000,36(2):110-113.
    [17]Musgrave M E.Waterlogging effects on yield and photosynthesis in eight wheat cultivars.Crop Science,1994,34:1314-1320.
    [18]张庆江,张立言,毕桓武.普通小麦碳氮物质积累分配特征及与籽粒蛋白质的关系.华北农学报,1996,11(3):57-62.
    [19]张庆江,张立言,毕桓武.春小麦品种的吸收积累和转运特征及籽粒蛋白质含量关系.作物学报,1997,23(6):712-718.
    [20]许为纲,胡琳,吕金印,等.冬小麦抽穗始期标记C同化物分配与运转的研究.核农学报,1998,12(1):7-11.
    [21]荆奇,戴廷波,姜东,等.不同生态条件下不同基因型小麦干物质和素积累与分配特征.南京农业大学学报,2004,27(1):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700