用户名: 密码: 验证码:
田间及强光高温条件下小麦旗叶光合特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在小麦生长后期经常遇到高温、强光、干旱等不利环境因子,并且高光强常伴随高温,使小麦旗叶光合速率下降,影响小麦的灌浆特性,造成减产,因此有必要研究不同基因型小麦耐高光强高温特性,为选育高光效小麦新品种和筛选高光效种质材料提供理论依据。
     本研究以黄淮麦区生产上应用的15份小麦品种为试验材料,采取田间种植和盆栽两种种植方式,研究了大田条件下小麦抽穗后旗叶的光合特性;对盆栽材料在灌浆期进行3h的强光(1900 mol·m~(-2)·s~(-1))加高温(35℃)的处理,研究了高光强和高温交互胁迫对小麦旗叶的光合作用、叶绿素荧光特性、抗氧化酶活性、质膜过氧化的影响。
     研究结果如下:
     1.由5个时期气体交换参数的日变化曲线可以看出,小麦抽穗以后,旗叶光合速率最大值出现的时刻有逐渐提前的趋势,这与光照强度、大气温度的日变化有关。在抽穗期4月18日开花期以前各个材料旗叶间净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(G_S)、胞间CO_2浓度(C_i)全天日变化差异并不十分明显。在4月25日和5月2日材料间Pn、Tr、G_S全天变化差异较大,而C_i差异不明显,在5月12日材料间气体交换参数只有Pn差异较大,Tr、G_S、Ci相差均不明显。非气孔因素是小麦后期材料间差异较大的主要原因,郑麦9405后期的光合特性优于其它品种。
     2.由4月25日和5月2日早上和中午时刻的荧光参数比较可以看出,两个时期12:00的PSⅡ最大光化学效率(Fv/Fm)较8:00均有下降,且藁城8901明显低于其它品种;两个时期12:00时刻的作用光下光系统Ⅱ的实际的量子效率(Φ_(PSⅡ))和光化学猝灭系数(qP)较8:00时刻均出现下降,但郑麦9405高于其它品种;两个时期12:00时刻的非光化学猝灭系数(NPQ)较8:00时刻均出现上升,郑麦9405明显高于其它品种,PSⅡ受到抑制较轻,对中午时刻强光高温具有较好的耐胁迫能力。
     3.4月28日之前四个小麦旗叶叶绿素含量未出现明显变化,且品种间差异不大,SPAD值均维持在50-55之间。到5月16日此时已经处于小麦灌浆后期,各个材料旗叶的叶绿素含量均出现大幅度下降,伴随净光合速率的快速下降,而此时郑麦9405的SPAD值明显高于其它材料仍保持30以上,光合速率仍接近10μmolCO_2·m~(-2)·s~(-1)伴随生育期的进程各材料旗叶的Φ_(PSⅡ)、qP和NPQ均呈现逐渐下降的趋势,郑麦9405各项荧光参数均较高,各材料的Fv/Fm在5月10日以前各材料均未出现明显变化,到5月16日出现快速下降,郑麦9405下降幅度最小。郑麦9405的持绿期和光合功能期较长。
     4.强光高温处理后,各个材料旗叶的Pn、Tr、G_S较对照都出现较大幅度下降;郑麦9405的Pn、G_S也出现下降,但降幅最小,E较对照略有上升;四种基因型小麦的C_i较对照未出现明显变化;处理后与对照相比四个材料的Fv/Fm、Φ_(PSⅡ)、qP均出现下降,而NPQ出现大幅上升;其中郑麦9405的各项荧光参数均为最大;处理后四个小麦旗叶的超氧化物歧化酶(SOD)活性未出现明显变化,抗坏血酸过氧化物酶(APX)活性出现不同程度下降,郑麦9405的过氧化氢酶(CAT)和过氧化物酶(POD)活性升幅大于其它三品种;处理后郑麦9405旗叶的超氧阴离子和丙二醛的含量升幅小于其它三品种。
     总之,小麦旗叶对强光高温的耐性存在基因型间差异,郑麦9405小麦旗叶的耐高光强高温特性优于藁城8901和周18两类品种;较高的蒸腾速率,较大的NPQ,较高的抗氧化酶活性以及后期较高的叶绿素含量可能是郑麦9405类小麦品种维持较高光合速率的原因。
Wheat (Triticum aestivum L.) crops often submitted to high temperature, high light or drought at later growth stage. High light is often associated with high temperature, which has a strong impact on photosynthesis and causes loss in wheat grain yield. It is necessary to explore the differences to high light and high temperature among wheat cultivars.
     We take 15 wheat cultivars grown in Huanghuai wheat zone as the material, the photosynthetic characteristics under field conditions and high light intensity (1900 mol·m~(-2)·s~(-1)) associated with high temperature (35℃) were studied among them.
     The results are as follows:
     1. The appeared time of maximum net photosynthetic rate in the morning was advaced with the date process, it was related to light and temprature. There were no significant differences in the diurnal variation of net photosynthetic rate (Pn), transpiration rate (Tr) and stomatal conductance (Gs) before April 18~(th), but significant differences were observed on April 25~(th) and May 2~(nd). The diurnal variation of Intercellular CO_2 concentration (C_i) has no significant differences in all days. The Pn, Tr and Gs in Zhengmai9405 were better than others at later stages. The mainly reason for the differences is the Non-stomatal limitations.
     2. There were no significant differences in the maximum photochemical efficiency (F_v/F_m) at 8:00 on April 25~(th) and May 2~(nd). Compared with the fluorescence parameters at 8:00, F_v/F_m at 12:00 decreased on April 25~(th) and May 2~(nd), F_v/F_m in GaoCheng was lower than others at 12:00, both the actual photochemical efficiency of photosystemⅡ(Φ_(psⅡ) and the photochemical quenching (qP) at 12:00 decreased while the non-photochemical quenching (NPQ) increased significantly in four cultivars, and each of the chlorophyll fluorescence parameters in Zheng Mai 9405 was the highest among the cultivars. PSⅡin Zhengmai 9405 was slightly inhibited, had better adaptability to the high light and high temperature at noon.
     3. The level of the relative chlorophyll content in all cultivars was steady before April 28~(th), and no significant differences among them, it deduced significantly till May 16~(th) . At this time Pn decreased greatly, too. The SPAD value of Zhengmai is 30 and Pn is 10μmolCO_2·m~(-2)·s~(-1), both index are higher than others. TheΦ_(psⅡ), qP and NPQ decreased form April 25~(th) to May 16~(th). There was no significant differences in the Fv/Fm before May 10~(th), it decreased significantly till May 16~(th)·Φ_(psⅡ), qP, NPQ and Fv/Fm in Zhengmai 9405 were the highest among them at all growth stages. Zhemgmai 9405 has longer green lasting period, so it can keep a long photosynthetic function period.
     4. The results showed after treatment with high light intensity and high temperature, different appearances were observed compare with the control in the cultivars: Pn, Tr, Gs in all cultivars were significantly reduced; Pn and Gs of Zhengmai 9405 decreased slightly and E increased slightly nevertheless; C_i didn't vary significantly in all cultivars. Fv/Fm, the efficiency of open centers of photosystemⅡ(Fv'/Fm'),Φ_(psⅡ), and qP decreased while NPQ increased significantly in the cultivars, and the five chlorophyll fluorescence parameters of ZM9405 were the highest among them. The activity of SOD didn't vary significantly and the activity of APX decreased inconsistently in all four cultivars, the activity of CAT and POD of Zhengmai 9405 increased higher than the other three. The content of (?) and MDA in Zhengmai 9405 were lower than the others after the treatment.
引文
1.蔡瑞国,张敏,王平,张体彬,顾锋,戴忠民,邬云海,王振林.小麦灌浆过程中旗叶光合及抗氧化代谢与素营养关系研究[J].中国农业科学,2008,41(1):53-62.
    2.陈国祥.低温下强光胁迫对小麦叶片光系统Ⅰ结构与功能的影响[J].植物生理学报,2000,26(4):337-342.
    3.陈国祥,张荣铣.小麦旗叶光合功能衰退过程中PSⅡ特性的研究[J].中国农业科学,2004(1):36-42.
    4.董树亭.不同密度条件下小麦光合能力的研究[J].山东农业大学学报,1986,17(4):9-16.
    5.戴新宾,张荣铣,许晓明,曹树青.低浓度CO_2诱导对小麦光合功能的影响[J].中国农业科学,2001,01:56-62.
    6.董树亭,等.高产小麦群体光合能力与产量的关系的研究[J].作物学报,1991,17(6):461-469.
    7.郭连旺,沈允钢.高等植物光合机构避免强光破坏的保护机制[J].植物生理学通讯,1996,32:1-8.
    8.郭程瑾,肖凯等.不同生态型品小麦种旗叶光合性能的研究[J].麦类作物学报,2002,22(3):42-46.
    9.韩凤山,赵明,赵松山等.小麦午睡原因的研究[J].作物学报,1998,14(4):296-302.
    10.胡延吉.小麦光合作用的遗传和改良潜力的初步研究[J].中国农业科学,1995,28(01),14-21.
    11.胡美君,王义芹,沈允钢,李振声,等.不同基因型小麦及其优选杂交后代的光合作用特性.2007,33(11):1879-1883
    12.焦健,高庆荣,张爱民,郝媛媛,王大伟,王霖.不同小麦雄性不育类型光合生理参数日变化的研究,作物学报,2007,33(8):1267-1271
    13.江华,沈允钢,李振声等.小麦杂交后代的光合作用[J].作物学报,2002,28(4),451-454.
    14.林植芳,林桂珠,李双顺.衰老叶片和叶绿体中超氧阴离子和有机自由基浓度的变化[J].植物生理学报,1988,14(3):238-243.
    15.赖世登,等.小麦光合速率和光呼吸的研究[J].植物学报,1981,23(2):122-126.
    16.李德全,高辉远,孟庆伟,植物生理学[M].北京:中国农业出版社,2000.
    17.李惠华,赖钟雄.龙眼体胚发生过程中抗坏血酸过氧化物酶活性的变化[J].亚热带植物科学,2006,35(3):9-11.
    18.李建建,郁继华,常雅君,徐晓昀,聂书明.高温胁迫对黄瓜幼苗叶片质膜透性及保护酶活性的影响[J].长江蔬菜,2007,9:59-61
    19.李树华,惠红霞,许兴.宁夏小麦光合性能的初步研究[J].宁夏农业科技,2000,1:6-10.
    20.李卫芳,王秀海,贺文娟.小麦Rubisco抗体的制备和旗叶中Rubisco含量的ELISA测定[J].农业生物技术学报,2006,14(3),397-400.
    21.李雁鸣,等.需水特性不同的两个冬小麦品种叶片光合特性的比较研究[J].麦类作物学报,2000,20(1):94-96.
    22.刘兆晔,于经川,杨久凯,江汝胜,王晓君.小麦生物产量、收获指数与产量关系的研究.中国 农学通报,2006,22(2),182-184
    23.刘剑波,宋心琦.分子氧,活性氧与生命[M].大学化学.1994,9(5):26-33.
    24.卢庆陶,郝乃斌.不同发育时期冬小麦旗叶的荧光特性研究[J].植物学报,2001,43(8):801-804.
    25.马德华,庞金安.高温对黄瓜幼苗膜脂过氧化作用的影响[J].西北植物学报,2000,20(1):141-144.
    26.孟庆伟,赵世杰,午间强光胁迫下叶黄素循环对小麦叶片光合机构的保护作用[J].作物学报,1998,24(6),:745-750.
    27.孟庆伟,赵世杰,田间小麦叶片光合作用的光抑制和光呼吸的防御作用[J].作物学报,1996,22(4):470-475.
    28.牟会荣,姜东,戴廷波,荆奇,曹卫星.遮荫对小麦旗叶光合及叶绿素荧光特的影响,中国农业科学,2008,41(2).399-606
    29.任德昌,等.高产冬小麦不同分蘖成穗类型品种群体光合能力的研究[J].麦类作物,1998,18(2):24-26.
    30.谭新星,许大全.小麦叶片的状态转换涉及PSⅡ向PS Ⅰ激发能满溢的变化[J].植物生理学报,1997,23(1),9-14.
    31.唐薇,罗振,温四民,董合忠,李维江,辛承松.干旱和盐胁迫对棉苗光合抑制效应的比较[J].棉花学报2007,19(1):28-32
    32.王利军,黄卫东,李家永.水杨酸对葡萄幼苗叶片膜脂过氧化的影响[J].中国农业科学,2003,36(9):1076-1080.
    33.王晨阳,朱云集,夏国军,王立臣.后期高温条件下小麦旗叶光合参数的变化及其相关性分析[J].华北农学报.2003,18(3):8-11.
    34.王荣富,张云华,于江龙,焦德茂.转PEPC基因水稻耐光抑制和光氧化的特性,安徽农业大学学报,2007,34(3):320-323
    35.王肃威,许长成,白克智,张其德,李良璧,匡廷云,李继云,李振声[J].两个不同基因型小麦光抑制特性的比较.植物学报,2000,42(12):1300-1303.
    36.王修兰,徐师华,李佑祥.小麦对CO_2浓度倍增的生理反应[J].作物学报,1996,22(3):340-344.
    37.王贺正,马均,李旭毅,李艳,张荣萍,汪仁全.水分胁迫对水稻结实期活性氧产生和保护系统的影响[J].中国农业科学,2007,40(7):1379-1387.
    38.王焕钟,李雁鸣,等.不同熟期小麦品种光合性能的初步研究[J].河北农业大学学报,1998,21(2):1-5.
    39.王义芹,谭伟,杨兴洪,李滨,童依平,李振声.不同年代小麦品种旗叶的光合特性及抗氧化酶活性研究,西北植物学报,2007,27(12):2484-2490
    40.魏爱丽,等.高等植物PSⅡ的光抑制与光破坏研究进展[J].西北植物学报,2004,24(7):1342-1347.
    41.魏晓飞,蔡永萍,常艳.转Bar基因小麦及其杂交后代旗叶光合特性的研究,中国农学通报,2007,23(5):203-234
    42.吴长艾,孟庆伟,邹琦,赵世杰.小麦不同品种叶片对光氧化胁迫响应的比较研究[J].作物学报,2003,29(3):339-344.
    43.许大全,丁勇.田间小麦叶片光合效率日变化与光合“午睡”的关系[J].植物生理学报,1992,18(3):279-284.
    44.许大全.光合速率、光合效率与作物产量[J].生物学通报,1999,34(8):8-10.
    45.徐增富,方志伟,张荣铣.小麦二酸核酮糖羧化酶和叶片导度与光合速率的关系[J].南京农业大学学报,1990,13(4):5-11.
    46.肖凯,张荣铣.杂种小麦光合特性的初步研究[J].作物学报,1997,23:425-431.
    47.徐如强,孙其信,张树榛.不同冬小麦品种对高温胁迫反应的研究[J].中国农业大学学报,1998,3(1):98-104.
    48.许为钢,胡琳等.陕西关中地区不同小麦品种光合特性及其演变[J].西北农业学报,1999,8(2):11-15.
     徐凯,郭延平,张上隆吴慧敏.不同素水平下二氧化加富对草蓦叶片光抑制的影响,应用生态学报 2007.18(1):87-93
    49.殷毓芬,张存良,姚凤霞.冬小麦不同品种叶片光合速率与气孔导度等性状之间关系的研究[J].作物学报,1995,21(5):561-567.
    50.岳寿松,等.小麦生育后期的光合作用与产量[J].山东农业大学学报,1989,(1):89-94.
    51.颜坤,陈娜,曲妍妍,郭峰,孟庆伟,赵世杰.高温胁迫下转甜椒正义甘油-3-酸酸基转移酶基因(GPAT烟草缓解PSⅡ光抑制,中国农业科学2007,40(11):2468-2473
    52.杨巧凤,江华.小麦旗叶发育过程中光合效率的变化[J].植物生理学报,1999,25(4),408-412.
    53.张黎萍,荆奇,戴廷波,姜东,曹卫星.温度和光照强度对不同品质类型小麦旗叶光合特性和衰老的影响,应用生态学报,2008,19(2):311-316
    54.张其德,蒋高明,等.12个不同基因型小麦的光合能力[J].植物生态学报,2001,25(5):532-536.
    55.张荣铣,朱根海.作物品种间叶片失绿进程模式的研究[J].南京师范大学学报,1992,15:87-94.
    56.张荣铣,程在全,方志伟,等.关于光合速率高值持续期的初步研究[J].南京师范大学学报,1992,15:76-86.
    57.张荣铣,方志伟.光合速率高值持续期筛选技术在小麦育种中的应用[J].南京农业大学学报,1999,13(4):47-48.
    58.张荣铣,徐增富,方志伟.野生一粒小麦和普通小麦一些光合特性的比较[J],南京农业大学学报,1990,13(4):1-4.
    59.张其德,蒋高明等.12个不同基因型冬小麦的光合能力[J],植物生态学报,2001,25(5):532-536.
    60.张志良.植物生理实验指导(第一版)[M]高等教育出版社.1990:154-155.
    61.张秋英,李发东,刘孟雨.冬小麦叶绿素含量及光合速率变化规律的研究[J].中国农业生态学报,2005(13):95-98.
    62 赵会杰,薛延丰.外源水杨酸对光抑制条件下小麦叶片光合作用的影响[J].植物生理学通讯,2005,41(5):613-615.
    63.赵世杰,史国安,董新纯.植物生理学实验指导[M].中国农业科学技术出版社,2000:142-143.
    64.赵致,陈坤玲.不同类型小麦品种抽穗后光合生理性状的变化[J].西南农业学报,1997,10:20-26.
    65.周竹青,朱旭彤.湖北小麦新品种旗叶光合速率变化及其相关环境因素分析[J].孝感师范专科学报:自然版,1998,18(4):75-79.
    66.周雪英,邓西平.旱后复水对不同倍性小麦光合及抗氧化特性的影响,西北植物学报,2007(2):0278-0285
    67.邹琦,许长成.午间强光胁迫下SOD对大豆叶片光合机构的保护作用[J].植物生理学报,1995,21(40):397-401.
    68.朱新广,王强,张其德,卢从明,匡廷云.在盐胁迫下光抑制及其恢复进程对冬小麦光合功能的影响(英文)[J].植物学报,2001,12:1250-1254
    69. Anderson J M, Park Y I, Chow W S. Unifying model for the photoinactivation of photosystem Ⅱ in vivo under steady-state photosynthesis[J]. Photosynth. Research, 1998,56:113-117.
    70. Andersson B, Barber J. Mechanisms of photodamage and protein degradation during photoinhibition of photosystem II [J]. Photosynthesis and the environment. 1996,5:101-121.
    71. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging[J]. Proc. Natl. Acad. Sci. 1993,90:7915-7922.
    72. Aro E M, Virgin I, Andersson B. Photoinhibition of Photosystem Ⅱ Inactivation, protein damage and turnover[J]. Biochim. Biophys. Acta 1993,1143:113-134.
    73. Austin, R B, J Bingham, R D Blackwell, L T Evans, M A Ford, C L Morgan and M. Taylor. Genetic improvement in winter wheat yields since 1900 and associated physiological changes[J]. J. Agric. Sci. 1980,94: 675-689.
    74. Austin RB, Morgan CL, Ford MA. Flag leaf photosynthesis of Triticum aestivum and related diploid and tetraploid species[J]. Annals of Botany, 1982,49,177-189.
    75. Barber J, Andersson B. Too much of a good thing: light can be bad for photosynthesis[J]. Trends Biochem Sci,1992,17: 61-66.
    76. Berry J. Bjorknran O. Photosynthetic response and adaptation to temperature in higher plants[J]. Ann Rev Plant Physiol, 1980,31 :491-453
    77. Bjorkman O, Powle S B. Inhibition of photosynthetic reactions under water stress interactions with light level[J]. Planta, 1984. 161: 490-504
    78. Bjorkman O. Low-temprature chorphyll fluorence in leaves and its relationship to photon yield of photosynthesis in photoinhibition[M]. Progress in Photosynthesis Reasearch Vol.IV@@@@. 1987,123-144.
    79. Bj(?)rkman O, Demmig B. Photon yield of O_2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins[J]. Plata, 1987,170: 489-504
    80. Bowler C, Montage M V, Inze D. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Physiology Plant Molecular Biology, 1992,43: 83-116.
    81. Brun, W A,Cooper,R L. Effects of Light Intensity and Carbon Dioxide Concentration on Photosynthetic Rate of Soybean[J]. Crop Sci,1967,7:451-454.
    82. Blubaugh D J, Cheniae G M. Kinetics of photoinhibition hydroxylamine-extracted photosystem Ⅰ membranes: relevance to photoactivation and sites of electron donation[J]. Biochemistry,1990,29: 5109-5118.
    83. Bumann D, Oesterhelt D. Destruction of a single chlorophyll is correlated with the photoinhibition of photosystem Ⅱ with a transiently inactive donor side[J]. Proc Natl Acad Sc, 1995,92: 12195-12199.
    84. Cadenas E. Biochemistry of oxygen toxicity[J]. Ann. Rev. Biochem. 1989 (58):79-100.
    85. Catsky Z. Sestak: Photosynthesis in plants cultivated in vitro. In: Pessarakli[M]: Handbook of Photosynthesis, Marcel Dekker, New York, 1997.
    86. Cornic G, Briantais J M. Partitioning photosynthetic electron flow between CO_2 and O_2 reduction in a C_3 leaf at different CO_2 concentrations and during drought stress[J]. Planta, 1991,104:283-291.
    87. D. Subrahmanyam, N. Subash, A. Haris, and A.K. Sikka. Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought[J]. Photosynthetica,2006,44 (1): 125-129.
    88. Dau H. Molecular mechanisms and quantitative models of variable photosystem Ⅱ fluorescence[J]. Photochem. Photobiol. 1994,60:11-23.
    89. Deming-Adams B. Cartenoids and photoprotection in plants: a role for the xanthophyll zeazanthin[J]. Biochimia et Biophysia Acta. 1990,10(20): 1-24.
    90. Deming-Adams B, Adams WW Ⅲ. Photoprotection and other responses of plants to high light stress[J]. Annu Rev Plant Physiol Plant Mol Biol. 1992,43:599-626.
    91. Deming-Adams B, Adams WW Ⅲ. Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species[J]. ;Planta,1996,198:460-470.
    92. Deming-Adams B, Adams WW Ⅲ. The role of xanthophylls cycle carotenoids in the protection of photosynthesis[J]. Trends Plant Sci, 1996,1:21-26.
    93. Deming-Adams B, Adams WW Ⅲ, Baker Dh, Logan BA, Bowling DR, Verhieven AS. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation[J]. Physiol. Plant. 1996 ,98:253-264.
    94. EI-Sharkawy, M A. Cock, J h, Lynam J k, et al. Relationship between biomass root yield and Bindle leaf photosynthesis in field-grown cassava[J]. Field Crop Sci,1990,25:183-188.
    95. Evans L T, Dunstone R L. Some physiological aspects of evolution in wheat[J]. Aust J Plant Sci, 1970,23:725-741.
    96. Foyer C H, and G Noctor. Leaves in the dark see the light[J]. Science,2000,284:5414- 5416.
    97. Foyer C H, Harhinson T,. Relationship between antioxidant metabolism and carotenoids in the regulation of photosynthesis[M]. In Frank H A, Young, The Photochemistry of Carotenoids. The Netherlands: Kluwer Academic Publishers,Dordrecht, 1999,305-325.
    98. Fridovich I. The biology of oxyen radical[J]. Science, 1978(201):875-880
    99. Genty B, Briantais JM, and Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochim Biophys Acta, 1989, 990: 87-92
    100. Gruszecki W I, Strzalka K. Does the xanthophylls cycle take part in the regulation of fluidity of the thylakoid memberance[J]. Biochinica et Biophysica Acta, 1991,1060:310-314.
    101. Golbeck J H. Structure, function and organization of the photosystem I reaction[J]. Biochim Biophys Acta 1987,895: 167-204.
    102. Horton P, Ruban A V, Walter R G Regulation of lighe harvesting in green plant indication by nonphotochemical quenching if chlorophyll fluresence[J]. Plant physiol, 1994, 106:415-420.
    103. Hui jie ZHAO and Ji_Fang TAN. Role of calcium ion in protection against heat and high irradiance stress-induced oxidative damage to photosynthesis of wheat leaves[J]. Photosyntehtica, 2005,43(3):473-476.
    104. Havaux, M. and Eyeletters, M. Is the in vivo photosystem I function resistant to photoinhibition? An answer from photoacoustic and far-red absorbance measurements in intact leaves[J]. Z. Naturforsch. 1991,46C: 1038-1044.
    105. Jan M. Photoinactivation and photoprotection of photosystem II in nature [J]. Physiologia Plantarum, 1997, 100: 214- 223.
    106. Jiao D M, Ji B H. Photoinhibition in Indica and Japonica subspecies of rice (Oryza sativa) and their reciprocal F_1 hybrids[J]. Aust J Plant Physiol,2001,28:299-306.
    107. Kok B. On the inhibition of pholosynthesis by intense light[J]. Biochim Biophy Acta. 1956,21: 234-244.
    108. Krause G H. Photoinhibition of photosynthesis, an evaluation of damaging and protective mechanisms[J]. Phsiol. Plant. 1988,74:566-574.
    109. Long S P, Humphries S. Photoinhibition of photosynthesis in nature[J]. Annu Rev Plant Physiol Plant Mol Biol,1994,45:633-662.
    110. Li X P, Bjorkman O, Sih C. A pigment-binding protein essential for regulation of photosynthetic light harvesting[J]. Nature, 2000, 403:391-395.
    111. Maxwell K, Johnson G N. Chlorophyll fluorescence: a practical guide[J]. J Exp Bot,2000,51:659-668
    112. Mehler A H. Stuies on reactons of illuminated chloroplasts I: Mechanism of the reduction of oxygen and other Hill reagents[J]. Arch. Biochem. Biophys. 1951,33:65-77.
    113 Miginiac-Maslow, M Hoarua. Hill reaction studies with protoplasts from cultivated wheat and their wild relatives[J]. Z. Pflanzen physiol. Bd,1919, 95: 95-104.
    114. Murchie E H, Chen Y, Hubbat S, Peng S, Horton P. Interactions between senescence and leaf orientation determine in situ patterns of photosynthesis and photoinhibition in field-grown rice[J]. Plant Physiol, 1999,119:553-563.
    115. Philippe Monneveux, Claudio Pastenes, Matthew P Reynolds. Limitations to photosynthesis under light and heat stress in three high-yield[J]. Journal of Plant Physiology, 2003, 160:657-666.
    116. Prasad T K. Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings[J]. Plant Physiology, 1997, 114:1369-1376.
    117. Qingtao Lu, Xiaogang Wen, Congrning Lu, Qide Zhang, Tingyun Kuang. Photoinhibition and photoprotection in senescent leaves of field-grown wheat plants[J]. Plant Physiology and Biochemistry, 2003,41:749-754.
    118. Raschke K, Resemann A. The midday depression of CO_2 assimilation in leaves of Arbutus undeo L: diurnal changes in photosynthetic capacity related to changes in temperature and humidity[J]. planta,1986,168:546-558.
    119. Sharkey, T D, F Loreto, and T L Vassey. Effects of stress on photosynthesis. In: Current Research in Photosynthesis [M]. Baltscheffsky ed. Martinus Nijhoff Publishers, Dordrecht, vol IV:549-556.
    120. Schatz G, Broch H, Holzwarth AR. Kinetic and energetic model for the primary process in photosystem Ⅱ[J]. Biophys J. 1988(54):397-405.
    121. Sato Y, Murakami T, Funatsuki H, MatsubaS, Saruyama H, Tanida M. Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings[J]. Journal of Experimental Botany, 2001.52:145-151.
    122. Shuvalov VA, Nuijs AM, Gorkom HJ, Smit HWJ, Duysens. Picosecond absorbance changes upon selective excitation of the primary electron donor P-700 in photosystem Ⅰ[J]. Biochim Biophys Acta, 1986 (85): 319-323.
    123. Sonoike K. Selective photoinhibition of photosystem I in isolated thylakoid membranes from cucumber and spinach[J]. Plant Cell Physiol, 1995(36): 825-830.
    124. Sonoike K. Degradation of Psab gene product, the reaction center subunit of photosystem Ⅰ, is caused during photoinhibition of photosystem Ⅰ: possible involvement of active oxygen species[J]. Plant Sci, 1996,115: 157-164.
    125. Sonoike K. Photoinhibition of photosystem Ⅰ: its physiological significance in the chilling sensitivity of plants[J]. Plant Cell Physiology, 1996,37: 239-247.
    126. Thorne, G N. Varietal differences in photosynthesis of ears and leaves of barley[J]. Ann.Bot. 1963,27(1):155-174.
    127. Thorne G N and French S A W. Analysis of growth and yield of winter and spring wheat[J]. Ann.Bot.N.S,1963, 27:1-22.
    128. Vass I, Styring S, Hunda T, Koivuniemi A, Aro EM, Andersson B. Reversible and irreversible intermediates during photoinhibition of photosystem Ⅱ: Stable reduced Q_A species promote chlorophyll triplet formation[J]. Proc. Natl. Acad. Sci. 1992(89):1408-1412.
    129. Waddington SR,Osmanzai M. The yield of durum wheats released in Mexico between 1960 and 1984. J Agric Sci Camb, 1987,108:469-477
    130. Zelitch I. The close relationship between net photosynthesis and crop yield[J]. Bioscience, 1982 (32):796-802.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700