用户名: 密码: 验证码:
三个陆地棉杂交种的产量杂种优势表现及其生理基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花产量杂种优势的机理研究对棉花杂交种选育及应用具有至关重要的作用。但由于作物的杂种优势遗传机理研究因其复杂性至今仍未能取得突破进展,因此,从产量表型及相关生理过程分析出发研究杂交棉产量优势形成的生理机理将是最终揭示杂种优势遗传机理的有效途径。
     本文以选取南抗3号、鲁棉研15号和湘杂棉3号等三个强优势转基因抗虫杂交棉为材料,对杂交棉及亲本在三个环境下的籽棉产量优势表现以及产量优势组成因子对产量优势的贡献做了较为系统的研究,分别从解剖学、光合生理及高温逆境生理等角度阐述了杂交棉生理优势表现及其与产量优势形成的关系,旨在揭示杂交棉产量优势形成的生理机理,为杂交棉产量杂种优势机理研究提供资料,为杂交种选育提供依据。
     1.生态条件对籽棉产量的影响较大,但杂交种与亲本之间的籽棉产量杂种优势表现关系受环境影响较小。籽棉产量与单株结铃数(0.745~(**))和单铃重(0.706~*)有极显著或显著正相关性。杂交种的籽棉产量超亲优势由杂种的单株结铃数和单铃重两个组成因子共同的超亲优势或同时结合了两个亲本的结铃数和单铃重优势组成。五室铃率表现明显的基因型差异,但也受环境影响很大。五室铃率与单铃重之间存在显著的正相关性(0.610~*),五室铃的平均单铃重比四室铃显著大17.43%。杂交种及亲本在“三桃”构成上有显著差异,三个杂交组合的杂交种的结铃数优势一致表现为伏前桃>伏桃>秋桃。杂交种的结铃性优势主要来源于伏前桃和伏桃的结铃优势。杂交种的伏前桃结铃数优势可能与结铃率优势有关。
     2.三个杂交组合共9个供试材料盛花期的主茎功能叶(倒4叶)主叶脉维管束表现有无分支型、二分支型和三分支型等三种类型,三分支型最发达,有利于营养物质的运输。三个组合均表现为:一个亲本的主茎功能叶维管束属于二分支型或无分支型,另一个亲本的主茎功能叶维管束为三分支型,其杂交种均为三分支型,表现出显性遗传的特征。三分支型维管束结构可能是棉花高产品种和杂交种产量优势形成的基础之一。三个杂交种的栅栏组织与海绵组织比例优势表现比较一致,均在1.12-1.15之间,下表皮单位叶面积气孔总面积均表现超亲优势,这可能是光合作用优势形成的基础之一。果枝叶柄与铃柄的导管数目和单个导管面积间显著正相关,说明果枝叶比功能叶与铃的发育更密切。
     3.湘杂棉3号正、反交杂交种和父本的光合速率日变化均为单峰型,母本为双峰型。杂交种光合速率超亲优势表现有明显的日变化。正、反交杂种的光合速率的最大超亲优势分别为27.34%和43.13%,均出现在午后13:00-17:00之间。光合速率超亲优势与光强的相关系数为0.861,达极显著水平,其次是湿度(-0.71~(**))和大气温度(0.667~(**))。杂交棉光合速率超亲优势主要不是最大光合速率的超亲优势,而是在高温、高光强等逆境条件下维持相对较强光合作用的能力。高温下的叶片自降温能力有明显优势,光合优势可能与叶片自降温能力关。杂交种在强光、低湿和高温逆境下的光合作用超亲优势可能是杂交棉产量优势形成的重要生理基础。
     4.南抗3号开花期主茎功能叶和第一果枝叶的色素总含量(SPAD值)的广义遗传力分别为10.71%、30.14%,单铃重、衣分、子指的广义遗传力分别为93.33%、91.63%和87.60%。单铃重的遗传变异系数最大、遗传力高,是可进行早期世代有选择潜力的育种指标。果枝叶的SPAD值与单株籽棉产量(0.163**)、单株皮棉产量(0.139**)、单铃重(0.148**)、结铃数(0.167**)等均有极显著正相关。果枝叶的SPAD值可作为棉花产量光合生理育种的参考指标。三个环境下南抗3号正交一代的光饱和光合速率均表现为中亲优势。杂种的光合特性受到母性遗传的影响,应注重母本光合特性的选择。杂交种的低光补偿点和高饱和点可能是杂种在多环境下光合特性优势表现的基础。叶绿素b和叶绿素a/b比值可能是影响光合作用的内在因子。
     5.南抗3号父本的花粉萌发临界温度在35℃-40℃之间,正反交杂种和母本的临界温度在40℃-45℃之间。南抗3号正、反交杂种及其亲本的花粉管在花柱中生长的临界温度在30℃-35℃之间。南抗3号正交一代的柱头上的花粉萌发数和花粉管在花柱中的生长速度均有明显的中亲优势。杂交后代的耐高温能力存在明显的母本细胞质遗传效应。40℃对所有材料的花柱生长总长度的促进作用最大,35℃次之,45℃最小。37/27℃高温处理可以影响南抗3号父本开花期16天的幼蕾的雄蕊发育,诱导败育,幼蕾的苞叶面积在在1.3×1.3cm-1.8×2.1cm之间。但37/27℃高温处理对正交杂种和母本的花粉发育无明显影响。
The studies on the mechanism of heterosis will greatly influence to the selection and application of breeding in hybrid cotton. However, the genetic mechanism of heterosis in seed cotton yield has not yet been able to achieve breakthroughs in progress because of its complexity, therefore, will embark the studies on the physiological mechanism from the phenotype analysis of yield and corrective physiological process will be the effective way to finally reveal the heterosis heredity mechanism.
     Emphasized on studying the heterosis in output of seed cotton and the physiological basis of heterosis for yield by using three transgenic Bt pest-resistant cotton hybrids Nankang3, Lumianyan15 and Xiangzamian3 and their parents. The heterosis for yield and the actions which factors of yields played in the yield heterosis under three different environments have been investigated systematically, and the relationship between the heterosis in physiological process and the yield heterosis was introduced also respectively from anatomy, the photosynthesis physiology, and the physiology suffer from high temperature adverse circumstance. The objective of the present study was to evaluated the physiological basis and accumulate data for the heterosis heredity mechanism studies and to provide guidelines for hybrid selective breeding. Results are summarized as follows:
     1. The yield was significantly influenced by the ecological condition.However, the tendency of F_1 heterosis performance had small environmental effect. The seed cotton output was signicantantly positively related to number of bolls per plant(0.745**) at 1% level of probability and boll weight(0.706*) at 5% level probability. The source of heterosis of yield in three hybrids rooted in over better-parent heterosis for the number of boll per plant and also in boll weight or based on the combination of mid-parent heterosis in number of boll per plant and boll weight. There was obvious difference in rate of five-cabins boll between different genotypes, but also was influenced by the environmental effect. The rate of five-cabins boll had signifcantant positively related to boll weight(0.610*) at 5% level of probability. The average boll weight of the five-canbins boll was higher than four -cabins boll for 17.43%. The hybrids and the parents had the remarkable difference in the constitution of the befor hot-boll、hot-boll and autum-boll. The heterosis in number of boll per plant exhibited before hot-boll > hot-boll > autum-boll with consistent in three hybrids. The heterosis in number of boll per plant of befor hot-boll and hot-boll constituted the main source of heterosis in number of boll per plant, specially for proportion of before hot-boll, but the little heterosis in autum-boll number of boll per plant. The heterosis of number of boll per plant maybe associate with the heterosis in boll retention of before hot-boll.
     2. There were significant differences between hybrid and its parents of Nankang3、Lumianyan15 and Xiangzamian3 in distribution of vascular bundles in the leaf nervures of the functional leaf(the fourth from top)in main stem during flowering stage. Three types of vascular bundles, three-offshoot, two-offshoot and no-offshoot were observed in leaf nervures of all tested materials. These were three-offshoot type in three hybrids and one of their parents, implying that the three-offshoot type was inherited dominantly., suggesting that there existed transgressive or mid-parent heterosis in all hybrids. The toal area of stomata per unit leaf area was a useful index for characteristic of stoma. The heterosis for the ratio of palisade tissue to spongy tissue which was 1.12~1.15 and the transgressive heterosis in toal area of stomata per unit leaf area on down leaf surface maybe the basis of heterosis for photosynthesis. There was significant positive correlation between leaf stalk of fruit branch and boll stalk in the number of vessel and area of a vessel, demonstrated that the leaves on fruit branch have more contribution to the boll development than functional leaves in stem(R~2_1=0.4791*, R~2_2=0.4702*).
     3 Two photosynthesis diurnal patterns were observed among Xiangzamian3 hybrids and their parents during flowering stage, of which Xiangzamian3 hybrids and male belonged to one-peak pattern and female showed a bimodal diurnal pattern. Hybrids showed significant over better-parents heterosis on photosynthesis. The biggest heterosis for photosynthetic rate in reciprocal hybrids was respectively 27.34% and 43.13% which were observed during 13:00-17:00. The over better-parent heterosis in photosynthesis was positively related to light intensity(0.861**), and secondly to humidity(-0.717**) and thirdly air temperature(0.667*) at 1% or 5% level of probability. The source of heterosis for photosynthesis was not from the heterosis for the max photosynthesis but for ability of keeping the max photosynthesis under high temperature and light conditions. It was probable that there was affinity between heterosis on photosynthesis and heterosis in ability of leaf temperature depressing. It was concluded that the over better-parent heterosis for photosynthesis under high temperatures and light.was physiological basis of yield.
     4 The general heritability in the broad sense of the total pigment content (the SPAD value) was respectively 10.71% and 30.14%, of which the functional leaf(the fourth from top)in main stem and the first fruit branch leaveses during flowering stage. The general heritability in the broad sense of boll weight、lint percentage and seed index respectively was 93.33%、91.63% and 87.60%. The boll weight was usefull traits as a potential selective for breeding in early stage because of its biggest genetic variance coefficient and highest general heritability in the broad sense. The SPAD value of fruit branch leaves had significant relativity with seed cotton output(0.163*)、lint cotton yield(0.139**)、boll weight(0.148**) and the number of bolls per plant(0.167*), which was considered as a referenced target for photosynthetic physiology breeding. Mid-parent heterosis of Nankang3 obverse F_1 in photosynthetic rate under saturated light was observed in three different environments. The photosynthesis characteristic of hybrid maybe belong to cytoplasmic inheritance, and should pay great attention to the selection of female parent with high photosynthesis characteristic. Owing the low light compensation point(LCP) and high light saturation point(LSP) possibly was the basis of heterosis in photosynthesis characteristic under different environment. The relationship of the chlorophyll b content and the chlorophyll a/b ratio were possibly affinity with the photosynthesis.
     5 The upper critical temperature of pollen germination on the stigma of Nankang3 male was distributed during 35℃~40℃, and of which Nankang3 reciprocal hybrids and their parents were during 40℃~45℃. The upper critical temperature of pollen tube grow in pistil for Nankang3 reciprocal hybrids and their parents were during 30℃~35℃. The mid-parent heterosis in pollen germination on the stigma of Nankang3 and mid-parent heterosis of obverse F1 and inverse F1 in speed of pollen tube grow in pistil was obversed. The heat tolerance of hybrids in reproduction had cytoplasmic effect of female. The 40℃temperature played most promoted action on the pistil growth, and secondly for 35℃and thirdly for 45℃. High-temperature treatment of 37/27℃which was treated 16 days before flowering affected development of stamen of little buts of which brachs area size were during 1.3×1.3~1.8*2.1cm in Nankang3 male and induced its male sterility, but not for hybrid and female parent.
引文
Ahmadzadeh A., Lee E. A., Tollenaar M. Heterosis for leaf CO_2 exchange rate during the grain-filling period in maize [J]. Crop Sci, 2004,44(6):2095-2100
    Barrow J. R. Comparisions among pollen viability measurement methods in cotton [J]. Crop Sci, 1983,23: 734-736
    Basu A. K.,Patil N.B.Producing quality cotton from commerical cotton hybrids grown under rainfed conditions in India [C]//. New Delhi: Technical Seminar at the 52nd Plenary Meeting of the International Cotton Advisary Committee.1993:12-16
    Bernardo R. Relationship between single-cross performance and molecular marker heterozygosity [J] Theor. Appl.Genet, 1992, 83: 628-634
    Berry J. A., ownton W. J. S. Photosynthesis VolⅡ.Development Carbon metabolism and plant productivity [M]. New York: A-cademic Press, 1982: 263
    Bhardawj H. L., Weaverjr J. B.Combining-abilily analysis in cotton for agronomic characters, fruiting efficiency, photosynthesis and bollworm resistcwce[J], J Agi sci, 1954, 103: 515-518
    Blum. A variation among wheat cultivars in the response of leaf gas exchange to light [J]. J Agric Sci,1990,115:305-311
    Boppenmaier J., Melchinger A. E., Seitz G., et al.Genetic diversity for RFLPs in European maize inbreds ##### Performance of crosses with in versus between heterotic groups for grain traits [J]. Plant Breeding, 1993,111:217-226
    Burke. John J.. Jeff Velten. and Melvin J. Oliver. In vitro analysis of cotton pollen germination.Agron J. 2004, 96:359-368
    Collatz G. J., Ball J. T., Grivet C, et al.Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer[J].Agric For Meteorol., 1991,54: 107-136
    Cowan I. R., Troughton J. H. The relative role of stomata in transpiration and assimilation [J]. Planta,1971,97:325-336
    Dudley J. W., Saghai Maroof M A , Rufener G. K.Molecular markers and grouping of parents in maize breeding programs [J]. Crop Sci,1991, 31: 718-723
    El-Sharkany, Metal, J. Hesketh, and H. Muramoto. Leaf photosynthetic rates and other growth characteristics among 26 species of Gossypium [J]. Crop sci., 1965, 5: 173-175
    Farquhar G. D., Sharkey T. D. Stomatal conductance and photosynthesis [J]. Ann Rev Pant Physiol,1982,33:317-345
    Fisher W. D. Heat induced sterility in upland cotton [C]//Memphis T. N. In:Proc. Beltwide Cotton Prod.Res. Conf. New Orleans: National Cotton Council,1975: 6-8
    Gates D. M. Leaf temperature and transpiration [J]. Agron. J. 1964, 56: 273-277
    Genty B., Briantais J. M., Baker N. R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence [J]. Biochim Biophys Acta,1989,199: 87-90
    Giffing B., Langridge J. Phenotypic stability of growth in the self-fertilized species Arabidopsis thaliana Statist. Genet. Plant Breedind,1963,982:368-394
    Godshalk E. B., Lee M., Lamkey K. R. Relationship of restriction fragment length polymorphisms to single-cross hybrid performance of maize [J]. Theor Appl Genet., 1990, 80: 273-280
    Hageman R. H., Lengand E. R., Dudley J. W. A biochemical approach to plant breeding [J]. Advance Agron. 1967,19:45-68
    Idso S., Reginato R. J., Radin J. W. Leaf diffusion resistance and photosynthesis in cotton as related to a foliage temperature based plant water stress index [J]. Agric Meteor, 1982,27: 27-34
    Kakani VG,Reddy KR, Koti S, et al.Differences inin vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Annals of Botany, 2005, 96(1):59-67
    Landivar J. A., D. N. Baker, and J. N. Jenkins. Application of gossym to genetic feasibility studies.Ⅱ analyses of increasing photosynthesis, specific leaf weight and longevity of leaves in cotton[J].Crop Sci., 1983,23: 504-510
    Lawlor D. W. Photosynthesis, productivity and environment [J]. J. Exp Bot, 1995, 46: 1449-1461
    Lee M., Godshalk E. B., Lamkey K. R. et al. Association of restriction fragment length polymorphisms among maize inbreds with agronomic performance of their crosses [J]. Crop Sci, 1989, 29:1067-1071
    Lewis D. Gene environment interaction: a relationship between dominance, heterosis, phenotypic stability and variability [J]. Heredity 1955a, 8: 333-356
    Lewis D. Gene interaction, environment and hybrid vigour [M]. Proc.Roy. Soc.London, B., 1955b,144:178-185
    Li Z., Pinson S. R. M., Park W. D., et al. Epistasis for three yield components in rice (Oryza sativa L.)[J]. Genetics, 1997, 145: 453-465
    Liu Z, Yuan YL, Liu SQ, et al. Screening for high-temperature tolerant cotton cultivars by testingin vitropollen germination, pollen tube growth and boll retention. Journal of Integrative Plant Biology,2006,48(6): 706-714
    Lu Z., Chen J., Percy R. G., et al. Photosynthetic rate, stomatal conductance and leaf area in two cotton species (Gossypium barbadense and Gossypium hirsutum) and their relation with heat resistant and yield [J]. J Plant Physiol,1997, 24:693-700
    Marani A., Avieli E. Heterosis During the Early Phases of Growth in Intraspecific and Interspecific Crosses of Cotton [J]. Crop Sci., 1973,13:15-18
    McWilliam J. R., Griffiing B. Temperature dependent heterosis in maize [J]. Aust. J. Biol.Sci.1965,18:569-581
    Melchinger A. E., Lee M., Lamkey K.R.et al. Genetic Diversity for restriction fragment length polymorphisms: Relation to estimated genetic effects in maize inbreds [J]. Crop Sci, 1990, 30:1033-1040
    Meyer V. G. Some effects of genes, cytoplasm, and environment on male sterility of cotton [Gossypium] [J].Crop Sci.,1969,9:237-242
    Mojayad, Fahima, Planchon, Claude. Stomatal and photosynthetic adjustment to water deficit as the expression of heterosis in sunflower [J]. Crop Sci, 1994, 34(1), 103-107
    Muramoto H. J., Hesketh, Sharkawy M. El.Relationships among rate of leaf area development,photosynthetic rate and rate of dry matter production among American cultivated cotton and other species [J]. Crop Sci. 1965,5:163-166
    Oosterhuis, D. M. Special research report[C]. Arkansas: Arkansas Agricultural Experiment Station, 1999:2A
    Radin J. W., Lu Z., Percy R. G., et al. Genetic variability for stomatal conductance in Pima cotton and its relation to improvements of heat adaptation [J]. Proc Natl Acad Sci USA, 1994, 91: 7217-7221
    Reddy K.R., Reddy V. R., Hodges H. F. Temperature effect s on cotton fruit retention [J]. Agron. J.,1992,84:26-30
    Smith O.S.,Smith J. S. C, Bowen S. L., et al. Similarities among a group of elite inbreds as measured by pedigree, F:grain yield, grain yield heterosis and RFLPs [J]. Theo r. App 1.Genet.,1990, 80:833-840
    Wells R.,William R. Meredith, Jr., et al. Heterosis in upland cotton II Relationship of leaf area to plant photosynthesis[J].Crop Sci, 1988, 28: 522-525
    Wells R., William R., Meredith Jr. Heterosis in upland cotton, I. growth and leaf area partitioning [J].Crop Sci,1986,26: 1119-1123
    White T.G., Richmond T. R. Heterosis and combining ability in top and diallel crosses among primitive,foreign and cultivated American upland cottons [J]. Crop Sci., 1963, 3: 58-63
    Yang Xinghong, Chen Xiaoying, Ge Qiaoying , et al. Stomatal and photosynthetic adjustment to water deficit as the expression of heterosis in sunfiower[J].Crop Sci, 1994, 34(1): 103-107
    艾天成,李方敏,周治安,等.作物叶片叶绿素含量与SPAD值相关性研究[J].湖北农学院学报,20(1):6-8
    白书农,刘文芳,肖翊华.杂交稻汕优36幼苗根系呼吸代谢特点的研究[J].武汉植物学研究,1990,8(2):165-170
    Bhatt J.G.棉花杂交种生育和光合速率的杂种优势[J].国外农学,1982,(3):15-17
    曹五七,李逊,谢林,白崎.杂种棉花叶片气孔形态及数量的扫描电镜观察[J].四川农业大学报,1995,13(2):158-160
    陈德华,王兆龙.转Bt基因抗虫棉杂交种光合生产及干物质分配特点研究[J].棉花学报,1998,10(1):33-37
    陈仲华,邬飞波,王学德,等.农艺因素对杂交棉浙杂166纤维产量和品质的影响及若干生理性状的杂种优势[J].棉花学报,2004,16(3):175-182
    陈祖海.陆地棉族系种质系与陆地棉品种间的杂种优势利用研究[J].棉花学报,1994,6(3):151-154
    代庆阳,汤泽生,苏学辉.杂交小麦与亲本三系叶绿体超微结构的比较研究[J].西南农业学报,1993,6(4):32-35
    邓仲篪,孙济中,张金发,等.杂交棉及其亲本光合特性的研究[J].华中农业大学报,1995,14(5):429-434
    董合忠,李维江,李振怀,等.转Bt基因抗虫杂交棉与其亲本的光合能力比较[J].核农学报,2000,14(5):284-289
    高辉远,皱琦,陈炳嵩.大豆光合日变化的不同类型及其影响因素[J].大豆科学,1992,11(3):219-225
    高璎,马克浓.棉花的产量形成及其诊断[M].上海:上海科学技术出版社,1982,pp 293-294
    郭海军,董志强,黄国存,等.陆地棉品种间杂交种杂29高产抗逆的生理生化机理研究.华北农学报,1994(增刊):42-45
    郭海军,鳌志强,林永增,等.杂交棉高产抗逆机理研究初报.中国棉花,1994,21(7):11-12
    郭立平,邢朝柱,苗成朵,等.棉花强优势杂交种中棉所29、38、39及其亲本的生理生化特性研究.棉花学报,2005,17(5):314-315
    郭培国,李明启.杂交水稻及其亲本光合特性的研究,功能叶片的希尔反应、光合酸化、ATP酶 活性和ATP含量[J].热带亚热带植物学报,1 97,5(1):65-70
    昊云康,戴敬,陈德华.肥对棉花根系载铃量的效应研究[J].棉花学报,1992,4(2):52-58
    何启平,董树亭,高荣歧.玉米果穗维管束系统的发育及其与穗粒库容的关系[J].作物学报,2005,31(8):995-1000
    何强,邓华凤,舒服,等.杂交水稻苗期发根性状与生育后期根系活力及穗部性状的关系[J].杂交水稻,2006,21(3):75-77
    洪继仁,杨素珍,沈继丕.高温影响棉蕾铃生长的初步观察[J].上海农业科技,1981,5:14-16
    候必新,张美桃.杂种棉优势利用[J].湖南文理学院学报,2004,16(2):62-64
    华国雄,Bourlanol F.M.,Oosterbuis D.M.陆地面耐旱品种苗期根系特性初探[J].中国棉花,1993(3):10-11
    黄瑞恒,李晋生,王勤,等.杂交小麦根系生育特点研究[J].河北农业科学,1993,1:1-4
    贾红梅,余渝,周小风,等.陆地棉杂种F_1和F_2的光合速率与产量的关系[J].新疆农业大学学报,2000,23(4):44-47
    姜丽芬,石福臣,王化田,等.叶绿素计SPAD-502在林业上应用[J].生态学杂志,2005,24(12):1543-1548
    金穗芬,王国芳,陆春祥.玉米杂种与其亲本根系活力及三酸腺苷酶、核糖核酸酶活性的比较研究[J].中国农业科学,1994,27(3):19-24
    金桂红,宋家祥.高温诱发棉花花粉败育的初步探讨[J].江苏农业科学,1981,3:27-30
    李宾兴,郭程瑾,王斌,等.缺胁迫下不同效率小麦品种及其杂种F_1的吸收利用特性.作物学报,2006,32(20):267-272
    李大跃,江先炎.杂交棉养分吸收、光合物质生产特性的研究[J].作物学报,1992,18(3):196-205
    李大跃,江先炎.杂种棉光合物质生产及其源库关系的研究[J].棉花学报,1991,3(2):27-34
    李国锋,何循宏.陆地棉5室铃比例与品种及栽培条件的相关性初探[J].中国棉花,2001,28(3):13-15
    李伶俐,房卫平,谢德意,等.不同品种杂交棉的光合特性及产量比较[J].中国农学通报,2006,22(9):189-192
    李伶俐,林同保,房卫平,等.杂交棉叶片衰老特点及高产生理机制研究[J],河南农业大学报,2006,40(4):341-345
    利容千,曾子申.杂交水稻与其三系茎叶解剖的比较研究[J].作物学报,1982,8(3):179-186
    李少昆,赵明,王树安.等一不同玉米基因型叶片呼吸速率的差异及与光合特性的关系[J].中国农业大学学报,1998,3(3):59-65
    李霞,丁在松,李连禄,等.玉米的光合性能杂种优势[J].应用生态学报,2007,18(5):1049-1054
    李雪梅,樊金娟,徐正进,等.辽宁地区杂交水稻F_1代和亲本之间萌发种子和幼苗的生理特性.沈阳 农业大学学报,2002,33(1):11-13
    李亚兵,许红霞,张立桢,等.不同类型棉花品种根系空间生长规律的研究[J].华北农学报,2002,17(1):109-113
    李永山,冯利平,郭美丽,等.棉花根系的生长特性及其与栽培措施和产量关系的研究.棉花根系的生长和生理活性与地上部分的关系[J].棉花学报,1992,4(1):49-56
    李永山,张凯,王晓璐,等.谢光兰陆地棉品种根系特性与耐旱性关系的研究[J].棉花学报,2000,12(2):85-86
    李宗贤,侯兆芳,韦应碧,等.杂交高粱的胚根优势及在种子工作中的利用[J].陕西农业科学,1983,11:16-17
    刘飞虎,梁雪妮.杂交棉产量优势及其成因分析[J].中国棉花,1999,26(2):11-13
    刘海荷,李瑞莲,陈金湘.Bt抗虫杂交棉叶片营养元素含量变化及其与产量的关系.生态学报,2006,26(8):2510-2515
    马均,周开达,马文波,等.水稻不同穗型品种穗颈节间组织与籽粒充实特性的研究[J].作物学报,2002,28(2):215-220
    南京农业大学植物教研组.植物显微技术[M].南京,南京农业大学农学院,1982
    聂以春,张献龙,杨细燕,等.抗虫杂交棉的光合及经济性状的优势及配合力研究[J].华中农业大学学报,2005,24(1):5-9
    欧志英,彭长连,林桂珠.田间条件下超高产水稻培矮64S/E32及其亲本旗叶的光合特性[J].作物学报,2005,31(2):209-213
    钱大顺,陈旭升,张香桂,等.棉花杂种优势生理生化研究进展[J].棉花学报,2000,12(1):45-48
    钱大顺,陈旭升 张香桂,等.苏杂16与其亲本的同工酶谱分析[J].棉花学报,1999,11(6):290-292
    钱前,朱立煌,熊振民,等.籼、粳、中间型水稻杂种F1的生物优势、经济优势与RFLP的关系研究.作物学报,24(1):74-77
    邱章,型以华,张久绪,等.棉花杂交种过氧化物酶同工酶和腺苷酸含量的研究[J].棉花学报,1990,2(2):45-51
    邵金旺,杨永利,张家骆.甜菜杂种优势与光化学特性的关系[J].内蒙古农牧学院学报,1996,17(1)29-34
    沈波,王熹.两个亚种间杂交稻组合的根系生理活性[J].中国水稻科学,2002,16(2):146-150
    沈继丕,洪继仁,杨素珍.温度对棉花结铃的影响[J].上海农业科技,1979,9:12-13
    沈淞海,许馥华.棉花杂种及其亲本光合色素特性比较[J].中国棉花,1992,4:10-12
    石庆华,李木英,涂起红.杂交水稻根系生长优势与吸特性关系的初步研究.江西农业大学学报,1999,21(2):145-148
    孙济中.棉花杂种优势的研究和利用[J].棉花学报,1994,6(3):135-139
    汤丽云,陆士伟.优质籼稻育种中F_1代生理优势的研究[J].杂交水稻,1999,14(4):34-36
    唐仕芳,王以录,余凤群,等.棉花根系生长特性研究[J].棉花学报,1985,试刊(1):70-76
    田晓莉,杨培株,何钟佩,等.棉花根-冠关系的研究-根系伤流液及叶片中内源激素的变化[J].中国农业大学学报,1999,1(5):92-97
    王娟,韩登武,任岗,等.SPAD值与棉花叶绿素和含量关系的研究[J].新疆农业科学,2006,43(3):167-170
    王荣富,张云华,焦德茂,等.超级杂交稻两优培九及其亲本生育后期的光抑制和早衰特性[J].作物学报,2004,30(4):393-397
    王树安,王纪华,梁振兴.杂种小麦源库基本特性的研究[J].作物学报,1994,20(4):426-431
    王武,聂以春,张献龙,等.转基因抗虫组合在棉花杂种优势利用中增产原因剖析[J].华中农业大学学报,2002,21(5),419-424
    王秀玲,赵明,王启现,等.玉米杂交种及亲本自交系气孔特征[J].作物学报,2004,30(3):293-296
    王勋陵,王静.植物的形态结构与环境[M].兰州:兰州大学出版社,1989:105-138
    王志芬,刘益同,施建国.杂种小麦拔节期素吸收的示踪研究.同位素,1994,7(4):209-213
    魏爱丽,王志敏,张俊平,等.野生一粒麦与普通小麦不同绿色器官光合特性和叶绿体结构特征[J].作物学报,2002,28(3):351-354
    魏西翠,李庆珍,庞居勤,等.陆地棉品种间杂种的霜前皮棉产量及其杂种优势研究[J].棉花学报,2002,14(5):269-272
    翁才浩.棉花根系的营养特点[J].中国棉花,1983,10(3):23-25
    邬飞波,Ollandet I.,陈仲华,等.三系杂交棉组合浙杂166的若干生育与生理特性研究[J].棉花学报,2002,14(6):368-373
    吴小月.棉花杂种优势预测初步研究[J].中国棉花,1980,(6):1-7
    肖成汉,何凤仙,傅廷栋.甘蓝型杂种油菜与其不育系和恢复系的幼苗生长和植株解剖比较研究[J].中国油料,1992,4:1-6
    肖凯,谷俊涛,张荣铣,等.杂种小麦同化特性及籽粒产量性状的研究[J].中国农业科学,1997,30(5):34-41
    肖凯,谷俊涛,张荣铣,等.杂种小麦光合特性的初步研究[J].作物学报,1997,23(4)425-431
    肖凯,谷俊涛,邹定辉,等.杂种小麦及其亲本光合同化特性的研究[J].作物学报,1999,25(3):381-388
    肖凯,谷俊涛,邹定辉,等.杂种小麦及亲本旗叶老化过程中CO_2导度的研究[J].作物学报,1998,24(4):503-508
    肖凯,尹振君.杂种小麦根系生理活性的研究[J].河北农业大学学报,1997,20(4):1-5
    肖凯,张荣铣.杂种小麦及其亲本光合作用对生态因子的响应[J].华北农学报,1999,14(1): 6-10
    肖凯,张荣铣,方敏,等.杂种小麦化优8号和化优5号光合特性的研究[J].江苏农业学报,1996,12(4):12-17
    肖凯,张荣铣,邹定辉,等.杂种小麦及亲本旗叶老化过程中RubisCO特性的研究[J].植物学报,1998,40(4):343-348
    肖太国.普通小麦(T.aestivum L.)若干生理特性的杂种优势初探[J].北京农学院学报,1990,2(5):45-48
    邢朝柱,喻树迅.棉花杂种优势表达机理研究进展[J].棉花学报,2004,16(6):379-382
    许大全.光合作用效率[M].上海:上海科学技术出版社,2002
    徐克章,苗以农.大豆光合生理生态的研究_第3报大豆叶形态解剖特征与光合作用速率[J].大豆科学,1983,2(3):169-174
    徐克章,苗以农.大豆光合生理生态的研究_第4报大豆不同节位叶片形态解剖的研究[J].大豆科学,1984,3(1):15-19
    徐立华,陈祥龙,何循宏,等.转基因抗虫杂交棉102棉铃发育动态研究[J].棉花学报,2000,12(1):2-5
    徐立华,李大庆,倪金柱,等.高温对棉铃胚珠数及不孕籽率影响的初步研究[J].江苏农业科学,1989,12:18-19
    徐立华,等.陆地棉品种间杂种苏杂16棉铃发育动态研究[J].棉花学报,1996,8(2):83-87
    徐荣旗,刘俊芳,江延龄,等.棉花杂种优势与几种生理生化指标的相关性[J].华北农学报,1996,11(1):76-80
    杨国正,展茗,毛树春,等.转Bt基因抗虫棉光合特性研究[J].中国棉花,2002,29(12):23-24
    游俊,刘金兰.陆地棉品种与陆地棉族系种质系间生理生化的杂种优势[J].棉花学报,1998,10:14-19
    远彤,郭天财。罗毅,孙金花.冬小麦不同粒型品种茎叶组织结构与籽粒形成关系的研究[J].作物学报,1998,24(6):876-883
    于强,任保华,王天铎,等.C_3植物光合作用日变化的模拟[J].大气科学,1998,22(6):867-880
    于艳杰,吴李君,吴跃进,等.陆地棉花粉粒萌发和花粉管生长特性[J].自然科学进展,2007,17(9):1299-1302
    曾斌,王庆亚,唐灿明.三个转Bt基因抗虫杂交棉杂种优势的解剖学分析[J].作物学报,2008,34(3):496-505
    张桂茹,杜维广,满为群,等.不同光合特性大豆叶的比较解剖研究[J],植物学通报,2002,19(2):208-214
    张家炎,张建波.棉花长、短柱头与授粉、结实的关系[J].湖北农学院学报,1985,5:121-123
    张建恒,李宾兴,王斌,等.低条件下不同效率小麦品种及其杂种F1光合同化特性研究[J].植物营养与肥料学报,2006,12(2):169-176
    张金发,邓仲篪,左开井,等.棉花陆海杂种部分光合特性的初步研究[J].华中农业大学学报,1995,14(2):115-119
    张立祯,曹卫星,张思平,等.棉花根系生长和空间分布特征[J].植物生态学报,2005,29(2):266-273
    张乃群.棉花叶脉维管组织排列的一点看法[J].南都学坛(自然科学版),1993,(2):85-86
    张其德,卢从明,林世青,等.杂交稻汕优63及其亲本光合特性的比较[J].杂交水稻,1994,1:22-26
    张其德,卢从明,张启峰,等.几组杂交组合的杂交稻及其亲本光合特性的比较研究[J].生物物理学报,1996,2(3):511-516
    张其德,卢从明,张世平,等.几组有优和无优杂交组合中杂交稻及其亲本光合功能的比较[J].植物学通报,1998,15(1):50-55
    张其德,朱新广,王强,等.冬小麦杂种F1及其亲本光合特性的研究初报[J].作物学报,2001,27(5):653-657
    张书芬,宋文光,傅廷栋.甘蓝型单、双低油菜细胞质雄性不育杂种生理优势.中国油料,1994,16(1):5-10
    张永丽,肖凯,李雁鸣.不同组合杂种小麦旗叶光合优势特点的研究[J].华北农学报,2004,19(1):63-66
    赵春江,郭晓维,张其德,等.不同穗型冬小麦叶片荧光诱变及光谱特性[J].中国农业科学,1999,32(2):43-46
    赵明,王美云,李少昆.玉米杂交种与亲本主要光合性状的比较[J].华北农学报,1997,12(2):39-43
    赵全志,吕德彬,程西永,等.杂种小麦群体光合速率及伤流强度优势研究[J].中国农业科学,2002,35(8):925-928
    赵昶灵,叶尚红,张树华,等.杂交粳稻“榆杂29"苗期生理优势研究.云南农业大学学报,1999,14(1):32-36
    郑彩霞,邱箭,姜春宁,等.胡杨多形叶气孔特征及光合特性的比较[J].林业科学,2006,42(8):19-25
    周春菊,张篙午,王长发.杂种小麦“901”某些光合生理特性研究[J].西北农业人学学报,1998,26(5):1-4
    朱绍琳.棉铃生物学[M].北京:中国农业科技出版社,1994;90-92
    朱伟,王学德,祝水金,等.鸡脚叶标记的三系杂交棉光合特性的研究[J].中国农业科学,2005,38(11):2211-2218

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700