用户名: 密码: 验证码:
多腔串联压电泵的设计及其在直线马达中的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电泵是利用压电振子的振动来改变腔体体积,并配合使用单向截止阀,从而实现对流体定向驱动的新型微小泵。本文在总结国内外压电流体泵研究现状的基础上,提出设计制作多腔串联压电泵,探讨腔体数量对压电泵输出性能的影响规律。为充分利用压电振子的振动能量,提出双作用压电泵的设计理论,并设计制作双作用式压电泵。将压电驱动技术与液压传动技术相结合,利用本文设计的压电泵制作压电液压直线马达,从而产生直线精密运动。主要工作如下:
     1.对泵用圆形压电振子进行理论建模,推导出其变形量与结构尺寸之间的关系,根据需要选择最佳尺寸的圆形压电振子。建立圆形压电振子性能的测试系统,对其工作性能进行试验测试。
     2.以单腔体有阀压电泵的设计理论为基础,通过腔体串联的方式设计多腔体压电泵,并对其工作原理及工作方式进行分析。试验测试多腔串联压电泵的输出性能,测试结果表明,随着串联腔体数量的增加,泵的输出压力可以显著提高,但对输出流量的影响不大。
     3.提出双作用式压电泵的设计理论,利用圆形双晶片压电振子的两个侧面同时进行工作,并设计制作单腔体及双腔串联式双作用压电泵,试验测试表明双作用压电泵可以有效提高压电泵的输出性能。
     4.结合液压传动技术,利用本文设计的三腔串联压电泵,设计制作压电液压直线马达,将压电泵用于直线精密驱动系统中;通过试验测试得出压电液压直线马达的输出性能与驱动信号间的关系及其最大输出功率,并与理论输出性能进行比较分析,得出其机械效率。
Piezoelectric pump is a new type of fluid pump, which is developed in recent years. It is a new actuator that driven by the converse piezoelectric effect of piezoelectric ceramics. Accompanied by the quickly developing of MEMS, piezoelectric pump which is an important branch of Mini-pump, has been researched all over the world. This article based on the domestic and foreign present research situation of piezoelectric pump, used the design theory of single chamber piezoelectric pump, designed and manufactured multi-chamber series and double acting piezoelectric pump, analyzed their working principle and driving mode, tested their output performance. Obtained the influence law of chamber series and piezoelectric pump’s output performance, double acting pump will improve the output performance effectively. Funded by the National Natural Science Foundation Project (No.50775093), designed piezoelectric hydraulic linear motor, which can generated precision linear stepping driving. Put up the testing system and tested the relationship between it’s output performance and the driving single of piezoelectric pump, and then calculated it’s max Theoretical output power.
     The main work of this article is as follows:
     1. Domestic and foreign present research situation of piezoelectric pump By studying the related data of China and foreign countries, obtained that the principal achievements of the study on piezoelectric pump are piezoelectric pump with check valve, piezoelectric pump without check valve, piezoelectric stack pump, and peristaltic piezoelectric pump, They are already widely used in drug injection, Biomedical Engineering, chip water cooling system, fuel cells and aerospace areas depended on their own peculiar advantages. Based on the summarization of the technology development and current application status of piezoelectric pump, this article put forward designed and manufactured multi-chamber series piezoelectric pump, in order to enhance the pump’s output performance and find out the influence law of chamber series and piezoelectric pump’s output performance. Meanwhile put forward a way to make full use of the vibration energy of piezoelectric bimorph, designed and manufactured double acting piezoelectric pump using this method.
     2. Theory analysis and performance testing of the piezoelectric bimorph
     The fundamental theoretical knowledge of piezoelectric ceramics is introduced, including piezoelectric effect, the development of piezoelectric materials, the kind of piezoelectric actuators etc. The relationship between the deformation of piezoelectric bimorph and its structural parameters, external driving signal was found out by building the theoretical model based on the basic hypothesis of Kirchhoff. According to the result and the demand of the pump structure, the suitable piezoelectric bimorph used in the pump is selected. Put up the testing system, test the relationship between the amplitude of piezoelectric bimorph and the magnitude and frequency of the signal, the pre-tightening force. Lay a foundation for the designing and manufacturing of multi-chamber series piezoelectric pump.
     3. Structural design of the multi-chamber series piezoelectric pump
     Based on the design theory of single chamber piezoelectric pump, designed the double-chamber series and three-chamber series piezoelectric pump using umbrella-shape valves, analyzed their working principles and obtained their best driving modes. In order to make full use of the vibration energy of piezoelectric bimorph, put forward the working principle of double-acting piezoelectric pump: using the two surfaces of piezoelectric bimorph to form two chambers with the pump body, and making the fluid flowing through the two chambers before ejection. Designed the single-bimorph double-acting piezoelectric pump and double-chamber series double-acting piezoelectric pump, analyzed their working principle and obtained their best driving mode.
     4. Output performance test of multi-chamber series piezoelectric pump
     Prototypes of multi-chamber series and double-acting piezoelectric pumps for testing have been manufactured, and the testing system has been put up. Than tested the output performance of the pumps, obtained the relationships between the output performances of the pumps (including the flow rate and the pressure) and the voltage, the frequency of the driving signal, the best working frequency, the maximum flow rate and the highest pressure. Compared and analyzed the testing data, the result showed that chamber series can improve the output pressure, it will double increase the pressure when added one more chamber, but it didn’t have anything to do with the flow rate. Double-acting piezoelectric pumps can make full use of the vibration energy of piezoelectric bimorph, the performance will be improved without adding chambers, especially the output pressure.
     5. Experimental study in the linear motor of piezoelectric pump
     Combined the piezoelectric driving technology and hydraulic transmission technology, designed the hydraulic linear motor driven by piezoelectric pump, which using the three-chamber series piezoelectric pump and choosing a suitable hydraulic cylinder, to generate precision linear stepping driving. Built the testing system and tested its performance, acquired the relationship between the output velocity, force and the external signal. Obtained the best working frequency and the minimum working voltage by analyzed the testing data, and the relationship between output power and the external signal,calculated the maximum output power under the voltage of 90V. Compared the testing result and the theoretical performance, found out that the mechanical efficiency is low, analyzed the reason and proposed the improvement measures.
引文
[1]朱一锟.流体力学基础[M].北京:北京航空航天大学出版社,1990,403-405.
    [2]杨大智.智能材料与智能系统[M].天津:天津大学出版社. 2000,第1版.
    [3]焦小卫,黄卫清,赵淳生.压电泵技术的发展及其应用[J].微电机,2005,38(5):66-69.
    [4]阚君武,杨志刚,程光明.压电泵的现状与发展[J].光学精密工程,2002,10(6):619-624.
    [5]吴博达,张志宇,孙晓峰等.流量最佳频率为50Hz的压电泵特性[J].吉林大学学报(工学版),2008,38(Sup):107-110.
    [6]刘亮.双腔型气体压电泵设计理论与关键技术研究[D].长春:吉林大学机械科学与工程学院,2008.
    [7]刘健.针对不同年度液体压电泵的设计与实验研究[D].长春:吉林大学机械科学与工程学院,2008.
    [8]张德君双腔四振子压电薄膜泵的理论与实验研究[D].长春:吉林大学机械科学与工程学院,2007.
    [9]何秀华,张睿,蒋权英.基于MEMS的压电泵及其研究进展[J].排灌机械,2007,25(4):64-68.
    [10]杨志刚,孙晓峰,等.双腔串联两阀与三阀压电泵的性能研究[J].光学精密工程,2007,15(2):219-223.
    [11]Y. Bar-Cohen and Z. Chang. Piezoelectrically actuated miniature peristaltic pump[C]. Proceedings of the SPIE Smart Structures Conference, SPIE, 2002, 3992: 669-676.
    [12]W J Spencer, W T Corbett, L R Dominguez, et al. An electronically controlled piezoelectric insulin pump and valves[J].IEEE Trans Sonics Ultrasonbics,1978, SU-25(3): 153-156.
    [13]Linnemann R, Woias P, Senff C D,et al. A self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases[C]. Proc. of the 11th IEEE MEMS 1998 Technical Digest Heidelberg,Germany,25-29,1998:532-537.
    [14]Van Lintel H T G, van de Pol F C M, Bouwstra S. A piezoelectric micropump based on micromachining of silicon[J]. Sensors and Actuators,1988,15:153-167.
    [15]Meiling Zhu, Paul Kirby, MartinWacklerle, Markus Herz, Martin Richter. Optimization design of multi-material micropump using finite element method[J]. Sensors and Actuators A,2009,149:130-135.
    [16]Young-Bog Ham, Woo-Suk Seo, Won-Young Cho, Dong-Won Yun, et al.Development of a piezoelectric pump using hinge-lever amplification mechanism[J].Electroceram,2008 DOI 10.10071:10832-008-9461.
    [17]A. Geipel,F.Goldschmidtb¨oing,A.Doll,P.Jantscheff,N. Esser, U. Massing,P. Woias. An implantable active microport based on a self-priming high-performance two-stage micropump[J]. Sensors and Actuators A,2008,145-146:414-422.
    [18]A.Geipel,F.Goldschmidtboeing,P.Jantscheff,N.Esser,U.Massing,P.Woias. Design of an implantable active microport system for patient specific drug release[J]. Biomed Microdevices,2008,(10):469-478.
    [19]刘长庚,周兆英,王晓浩,等.压电驱动微型喷雾器的研究[J].压电与声光,2001,23(4):272-274.
    [20]冯焱颖,周兆英,叶雄英,等.压电致动微喷的压力波特征分析[J].微纳电子技术,2003,40(7):506-511.
    [21]吴丽萍.扁锥腔无阀压电泵理论与实验研究[D].长春:吉林大学机械科学与工程学院,2008.
    [22]吴丽萍,程光明,曾平,等.单振子双腔体无阀压电泵结构设计与机理分析[J].光学精密工程,2007,15(7):1044-1048.
    [23]吴丽萍,杨志刚,曾平,等.单振子双腔体压电泵的输出性能实验[J].西安交通大学学报,2007,41(5):628-630.
    [24]吴丽萍,杨志刚,程光明,等.声控无阀压电喷流泵[J].光学精密工程,2008,16(4):651-655.
    [25]吴丽萍,程光明,杨志刚,等.双作用压电泵绝缘压电振子[J].光学精密工程,2008,16(1):103-107.
    [26]张建辉,黎毅力,刘菊银,夏齐宵.“Y”形流管无阀压电泵模拟与试验[J].光学精密工程,2008,16(4):669-675.
    [27]张建辉,路计庄,夏齐霄,寇杰,任刚.细胞或高分子输送用“Y”形流管无阀压电泵的工作原理及流量特性[J].机械工程学报,2008,44(9):92-99.
    [28]张建辉,黎毅力,刘菊银,徐宇哲.“Y”形流管无阀压电泵流场分析[J].北京工业大学学,2008,34(2):126-132.
    [29]何秀华,张睿.“V”形无阀压电泵理论分析与数值模拟[J].排灌机械,2008,26(4),30-34.
    [30]何秀华,张睿,杨嵩,邓许连,蒋权英.V型无阀压电泵的流场分析[J].农业机械学报,2008,39(10):218-221.
    [31]何秀华,蒋权英,张睿.特殊无活动部件阀压电泵机理分析与数值模拟[J].排灌机械,2008,26(2):27-30.
    [32]高建民,任宁,谌志伟.无阀微压电泵关键部件工作过程仿真[J].农业机械学报,2008,39(2):130-133.
    [33]彭太江.多腔体有阀压电泵设计理论及应用研究[D].长春:吉林大学机械科学与工程学院,2006.
    [34]刘国君.迭片式系列微型压电泵的设计理论及实验研究[D].长春:吉林大学机械科学与工程学院,2006.
    [35]刘国君,范尊强,董景石,等.用于胰岛素推注的压电微泵[J].吉林大学学报(工学版),2007,37(2):372-376.
    [36]沈传亮,刘国君,董景石,等.压电型多振子单腔精密药物输送泵[J].吉林大学学报(工学版),2007,37(1)89-94.
    [37]郑俊麟,焦宗夏,刘光聪.一种基于压电陶瓷的新型灵巧液压泵[J].压电与声光,2008,30(4):428-431.
    [38]H.K.Ma, S.H.Huang, B.R.Chen, L.W.Cheng. Numerical study of a novel micro-diaphragm flow channel with piezoelectricdevice for proton exchange membrane fuel cells[J].Journal of Power Sources,2008,180:402-409.
    [39]H. K. Ma,B. R. Hou,H. Y. Wu,C. Y. Lin ,J. J. Gao,M. C. Ko. Development and application of a diaphragm micro-pump with piezoelectric device[J].Microsyst Technol,2008,14:1001-1007.
    [40]Hsiao-Kang Ma, Bo-Ren Hou, Cheng-Yao Lin, Jhong-Jhih Gao. The improved performance of one-side actuating diaphragm micropump for a liquid cooling system[J].International Communications in Heat and Mass Transfer,2008,35:957-966.
    [41]Ling-Sheng Jang,Yung-Chiang Yu.Peristaltic micropump system with piezoelectric actuators[J]. Microsyst Technol,2008,14:241-248.
    [42]Laser DJ, Santiago JG. A review of micropumps[J]. Journal of Micromechanics and Microengineering,2004,14(6):35-64.
    [43]Peter Woias. Micropumps-past, progress and future prospects[J]. Sensors and Actuators B,2005,105(1):28-38.
    [44]Vishal Singhal, Suresh V Garimella, Arvind Raman. Microscale pumping technologies formicrochannel cooling systems[J].Applied Mechanics Review,2004, 57(3):191-221.
    [45]丁辛芳,刘岩海.微型泵的驱动技术[J].电子器件,2001,24(1):87-90.
    [46]李勇,周兆英,叶雄英.微型泵和微型阀的进展[J].仪器仪表学报,1996,17(1):56-60.
    [47]张扬军,唐学林,吴玉林.微型泵研究进展[J].水泵技术,1996,(6):26-29.
    [48]王沫然,李志信.基于MEMS的微泵研究进展[J].传感器技术,2002,21(6):59-61.
    [49]崔建国,郑小林,等.基于MEMS的微型泵技术研究[J].中国医疗器械杂志,2004,28(3):190-193.
    [50]Nam-Trung Nguyen,Xiaoyang Huang,Toh Kok Chuan. MEMS-Micropumps:A Review[J]. Journal of fluids engineering-Transactions of the ASME(American Society of Mechanical Engineers), 2002, 124(22): 384-392.
    [51]Seung-Bok Choi ,Joong-Kyu Yoo , Myoung-Soo Cho.Position Control of a Cylinder System Using Piezoactuator-Driven Pumps[J]. Proceedings of SPIE,2002,4701:0277-786X/02
    [52]S.B. Choi, J.K. Yoo, M.S. Cho, Y.S. Lee. Position control of a cylinder system using a piezoactuator-driven pump[J]. Mechatronics,2005,15:239-249.
    [53]电子陶瓷情报网编.压电陶瓷应用[M].山东:山东大学出版社,1985.
    [54]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵[M].北京:北京大学出版社,2004.
    [55]Li Bo, Chen Quanfang, Lee Dong-Gun. Development of large flow rate,robust,passive micro check valves for compact piezoelectrically actuated pumps[J]. Sensors and Actuators,2004,117(3):325-330.
    [56]Y H Mu, N P Hung, K A Ngoi. Optimization design of a piezoelectric micropump[J]. The international journal advanced manufacturing technology,1999,15:573-576.
    [57]A Fernandes, J Pouget. Accurate modelling of piezoelectric plates: single-layered plate[J]. Archive of Applied Mechanics, 2001, 71(8): 509-524.
    [58]C Liu,T Cui,Z Zhou.Modal analysis of a unimorph piezoelectrical transducer[J]. Microsystem Technologies, 2003,9(6-7): 474-479.
    [59]Guiqin Wang,Bhavani V.Sankar, Louis N.Cattafesta. Analysis of a composite piezoelectric circular plate with initial stresses for MEMS[C]. Proceedings of 2002 ASME International Mechanical Engineering Congress and Exposition,2002(11): 17-22.
    [60]Michel Brissaud. Theoretical modelling of non-symmetric circular piezoelectric bimorphs[J]. Journal of Micromech and Microeng,2006(16):875-885.
    [61]Q Wang, S T Quek, et al. Analysis of piezoelectric coupled circular plate[J]. Smart Mater. Struct, 2001(10):229-239.
    [62]Christopher Niezrecki, Diann Brei, Sivakumar Balakrishnan, et al. Piezoelectric Actuation: State of the Art[J]. The Shock and Vibration Digest,2001,33(4): 269-280.
    [63]R. Le Letty, F. Barillot, H. Fabbro, et al. Miniature piezo mechanisms for optical and space application[C]. Actuators 2004, 9th International Conference on New Actuators, 14-16 June 2004, Bremen, Germany.
    [64]吴博达,鄂世举,杨志刚,等.压电驱动与控制技术的发展与应用[J].机械工程学报.,2003,39(10):79-85.
    [65]唐可洪,阚君武,彭太江,等.压电叠堆泵驱动的新型直线马达[J].光学精密工程,2009,17(1):145-150.
    [66]阚君武,阚均满,唐可洪,等.压电薄膜泵驱动的新型直线马达[J].吉林大学学报(工学版),2008,38(6):7331-7338.
    [67]Junwu Kan, Kehong Tang, Yu Ren, Guoren Zhu, Peng Li.Study on a piezohydraulic pump for linear actuators[J].Sensors and Actuators A,2009,149: 331-339.
    [68]高俊峰.压电叠堆驱动式液压直线马达研究[D].长春:吉林大学机械科学与工程学院,2008.
    [69]Daniel D. Shin, Kotekar P. Mohanchandra, Gregory P. Carman.Development of hydraulic linear actuator using thin film SMA[J]. Sensors and Actuators A,2005, 119:151-156.
    [70]Mao-Hsiung Chiang , Chung-Chieh Chen, Tan-Ni Tsou. Large stroke and high precision pneumatic–piezoelectric hybrid positioning control using adaptive discrete variable structure control[J].Mechatronics,2005,15:523-545.
    [71]Yung-Tien Liu , Chia-Chi Jiang.Pneumatic actuating device with nanopositioning ability utilizing PZT impact force coupled with differential pressure[J].Precision Engineering,2007,31:293-303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700