用户名: 密码: 验证码:
车辆操纵稳定性和平顺性虚拟评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过调研国内外整车操纵稳定性和平顺性的相关文章和著作,总结出了针对整车操纵稳定性和平顺性的虚拟评价方法,并利用某多轴独立悬架仿真模型,进行虚拟评价分析,进而得出该整车操纵稳定性和平顺性的虚拟评价。
     论文分析整理了操纵稳定性和平顺性的评价方法和评价指标。针对操纵稳定性,提出了几种常见的操纵稳定性特性并给出了各自相应的评价指标。针对平顺性,介绍了平顺性仿真数据的处理和评价方法。
     对整车动力学模型进行操纵稳定性的仿真分析,并得到各个工况的虚拟评价指标。对整车动力学模型进行平顺性仿真分析,得到平顺性的虚拟评价指标:加速度均方根值。
     通过对整车动力学模型进行操纵稳定性的仿真,并对仿真结果进行虚拟评价分析,说明此车有较好的操纵稳定性。通过对整车动力学模型进行平顺性的仿真,并对仿真结果进行虚拟评价分析,说明此车在B级路面和低速的D级路面有较好的平顺性,但在高速的D级路面平顺性稍差。
Along with the development of automotive technology all over the world, the position of automotive industry in national economy is arising. The large sales of automotive products make the transport equipment manufacturing industry be the third largest industry, only below the Oil industry and the electronic industry among the 20 major industries, which become the main driving force of economic growth. Since 1980s, CAD/CAE/CAM and other computer technologies have been applied in automotive field gradually. "Virtual development" gradually changes the traditional vehicle development process. During the whole process of vehicle development, comprehensive application of computer-aided technologies can save development costs by 30 percents or above and greatly shortens the vehicle development cycle. At the late of 1990s, computer technologies and application software development make the complexity of vehicle modeling increased more and more. Application of Multi-rigid-body system (Multi-Body System) dynamic analysis software, such as ADAMS, DADS makes the complex vehicle models be clearly expressed and be solved easily.
     Vehicle is a complex mechanical system, and its structure has many types. When applying virtual prototyping analysis software to do system dynamics and kinematics analysis, other relevant technologies are always integrated, in order to take advantage of the strengths of different analysis software.
     A vehicle of 6×6 independent suspension systems is chosen as the research object, which is composed of front suspension system, middle suspension system, and rear suspension system, and its driving form is six-wheel driving. Based on Multi-Body System dynamics and the simulation platform of ADAMS, according to vehicle modeling parameters of the three-axles vehicle of independent suspension systems, whole vehicle model which includes the following sub-models: front double wishbone independent suspension system, middle double wishbone independent suspension system, rear double wishbone independent suspension system, horizontal Stabilizer Bar, Steering System, Brake System , powertrain, front / rear wheels, and the vehicle body. Based on the vehicle model, some simulation analysis is carried out.
     The evaluation method and evaluation indicators of handleability, stability, and ride comfort are analyzed and collated. For handleability and stability, several common characteristics of handleability and stability are proposed, such as steady-state steering performance, transient steering characteristics, side-roll characteristics, vertical roll characteristics, turning-back steering characteristics, steering characteristics during a sharp turn, steering handiness characteristics, frequency response characteristics, and their corresponding evaluation indicators are given. For ride comfort, the simulation data processing method and evaluation method are introduced.
     Simulation on handleability and stability is carried out based on the vehicle dynamics model. According to the national standard of vehicle handleability and stability, several tests simulation are done, which include steering wheel angle-step input test, steering wheel angle-pulse input test, turning-back performance test, steady-state turning-back test, steering handiness test, snake-form test, double-line shift test, breaking during turning test. The evaluation indicators of the corresponding operation conditions are obtained.
     Simulation on ride comfort is carried out based on the vehicle dynamics model. According to the national standard of vehicle ride comfort, simulation analysis is carried out on the vehicle model, and the test data is processed. The acceleration Root-Mean-Square is chosen as the indicators of vehicle ride comfort.
     The main conclusions of the study are as follows:
     ①.According to the simulation result analysis on handleability and stability which is based on the vehicle dynamics model, the researched vehicle has good handleability and stability.
     ②.According to the simulation result analysis on ride comfort which is based on the vehicle dynamics model, the researched vehicle has good ride comfort on B-degree road and D-degree road of low speed, but has bad ride comfort on D-degree of high speed.
引文
[1]郭孔辉.汽车操纵动力学(第1版)[M].长春:吉林科学出版社,1991.
    [2]余志生.汽车理论(第2版)[M].北京:机械工业出版社,1990.
    [3] M.B.Cerrard . Rolling Centres and Jacking Forces in Independent Suspensions[C].SAE paper M1999010046,1999.
    [4] Orlandea N,Chace M A.Simulation of vehicle suspension with ADAMS computer program[C].SAE Technical Paper 770053, 1977.
    [5] Hegazy S,Rahnejat H, Hussain K.Multi-body dynamics in full-vehicle handling analysis[J].Proceeding of Institution of Mechanical Engineers (Part K), 1999.
    [6] Rahnejat H.Multi-Body Dynamics:Vehicles:Machines, and Mechanisms[J],1998 (Society of Automotive Engineers, Warrendale, Pennsylvania).
    [7] Ryan RR.ADAMS-Multibody System Analysis Software,In: SchiehlenW.,Ed.,Multibody Systems Handbook .Springer-verlag,1990.
    [8] Blundell, M V, Phillips, B D. and Mackie A.The modelling and simulation of suspension systems, tyre forces and full vehicle handling performance[C] . In Proceedings of 10th International Conference on Systems Engineering (ICSE 94),Coventry,September 1994.
    [9] ADI Real-time seventeen-degree-freedom of a motor vehilce simulation. Prepared by ADI Technical Staff[R],Application Report,1990.
    [10]上官文斌,黄虎,刘德清.多刚体系统动力学在汽车独立悬架运动分析中的应用[J].汽车工程,1992.
    [11]张海岑.汽车列车操纵稳定性和制动性模拟计算研究[D].北京:清华大学,1992.
    [12]张越今.多体动力学在轿车动力学仿真及优化研究中的应用[D].北京:清华大学,1997.
    [13]林逸,陈欣,王望予.独立悬架中的橡胶减震元件对汽车性能的影响[J].吉林工业大学学报,1993,3.
    [14] Blundell M V.The modeling and simulation of vehicle handling Part 3:tyremodeling[J].Proceeding of Institution of Mechanical Engineers(PartK),2000.
    [15] Guo Konghui,Liu Qing.Modelling and simulation of non-steady state cornering properties and identification of structure parameters of tyres[J].Vehicle System Dynamics,1997.
    [16] Guan DH,Jin Shang&Yam LH.Establishment of Model for Tire Steady State Cornering Properties using Experimental Modal Parameters Vehicle System Dynamics,2000.
    [17]袁士杰,等.多刚体系统动力学[M].北京:北京理工大学出版社,1992.
    [18] Zeid A,Chang D.Simulation of multi-body systems for the computer Aided Design of Vehicle dynamic control[C].SAE paper,1991.
    [19] Peter M.Riede and Willian A.Cobb.Typical Vehicle Parameters for Dynamics Studies[C].Revised for the 1980’s SAE Paper No.840561.
    [20]陈家瑞,汽车构造[M].北京:机械工业出版社,2001.
    [21] MSC,ADAMS/Car Help,Version 2005.2.0.
    [22] MSC,Tutorials and Examples,Version 2005.2.0.
    [23] MSC,Getting Starting Using ADAMS/Car,Version 2003.
    [24] MSC,ADAMS/Car Training Guide,Version 11.0.
    [25] MSC,ADAMS/Tire Option,Version 2005.2.0.
    [26]【德】M.米奇克著,陈荫三译.汽车动力学A卷(第二版)[M].人民交通出版社,1992,3.
    [27]【德】M.米奇克著,陈荫三译.汽车动力学C卷(第二版)[M].人民交通出版社,1996.
    [28]宗长富,郭孔辉.汽车操纵稳定性的主观评价[J].汽车工程,2000,5.
    [29]宗长富,郭孔辉.汽车操纵稳定性的研究与评价[J].汽车技术,2000,6.
    [30]郭孔辉.驾驶员—汽车闭环系统主动安全性的综合评价指标和优化设计[J].汽车技术,1993,4.
    [31]郭孔辉,朱宏巍.汽车转向的力输入控制与角输入控制及其对驾驶员-汽车闭环系统的影响[J].吉林工业大学学报,1997,1.
    [32]庄继德.汽车轮胎学[M].北京:北京理工大学出版社,1997.
    [33]项俊.轿车多体动力学建模仿真及应用研究[D].武汉:华中科技大学,2005.
    [34] GB/T 6323.1—1994《汽车操纵稳定性试验方法蛇形试验》.
    [35] GB/T 12534—1990《汽车道路试验方法通则》.
    [36] QC/T 480—1999《汽车操纵稳定性指标限值与评价方法》.
    [37] GB/T 6323.5—1994《汽车操纵稳定性试验方法转向轻便性试验》.
    [38] GB/T 6323.2—1994《汽车操纵稳定性试验方法转向瞬态响应试验(转向盘转角阶跃输入)》.
    [39] GB/T 6323.3—1994《汽车操纵稳定性试验方法转向瞬态响应试验(转向盘转角脉冲输入)》.
    [40]孙祥,徐流美,吴清.Matlab7.0基础教程[M].北京:清华大学出版社,2005.
    [41] GB/T 6323.4—1994《汽车操纵稳定性试验方法转向回正性能试验》.
    [42] GB/T 6323.6—1994《汽车操纵稳定性试验方法稳态回转试验》.
    [43]徐涛.数值计算方法[M].长春:吉林科学技术出版社,1998.
    [44] ISO 4138 2004 Passenger cars-Steady-state circular driving behaviour-Open-loop test methods.
    [45] Angelo C.Nuti , Objective Metric x Subjetive Evaluation[C] , SAE TechnicalPaper2003-01-3723.
    [46] [德]耶尔森.赖姆帕尔.汽车底盘基础[M].科学普及出版社,1992.
    [47]余志生.汽车理论(第3版)[M].北京:机械工业出版社,2002.
    [48]章兰珠,王军.汽车悬架对行驶平顺性影响[J].华东理工大学学报,2007,12.
    [49]高红华,陈学东,钱文军.汽车平顺性的建模分析及研究[J].工程设计学报2003,6.
    [50]郑振森.基于ADAMS的汽车行驶平顺性初步研究[D].大连:大连理工大学,2007.
    [51]郑兰霞.非线性悬架系统的汽车平顺性研究[D].合肥:合肥工业大学,2004.
    [52]王望予.汽车设计[M].北京:机械工业出版社,2004.
    [53]余志生.汽车理论[M].北京:机械工业出版社,1990.
    [54]于英.多轴越野车辆油气悬架系统参数仿真[J].农业机械学报,2005,36(11).
    [55] Parametric Simulation of Multiaxile Off-road Vehicle with Hydro-pneumatic Suspension.
    [56]居刚,李国振.重型牵引车悬架主要参数的匹配设计[J].合肥工业大学学报(自然科学版),2007,30.
    [57]王宇,秦峰,高连兴.汽车悬架主要性能参数的匹配研究[J].拖拉机与农用运输车,2006,33:83~87.
    [58]杨树凯.独立悬架的评价指标与评价方法及其在双横臂与多连杆式悬架上的仿真实现[D].长春:吉林大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700