用户名: 密码: 验证码:
烃基黄药浮选捕收剂光化学降解性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄原酸盐(ROCSSMe,俗称黄药)是有色金属硫化矿浮选中常用的有机浮选药剂。本文研究了烃基黄药(乙基、异丙基、正丁基、异丁基和正戊基)降解的试验方法。主要采用了紫外光(UV)辐照法、UV/Fenton试剂法、UV/H_2O_2法、UV/H_2O_2/搅拌法和UV/US/H_2O_2法,考察了氧化剂、反应时间、分散方式等因素对烃基黄药降解性能的影响,初步探讨了烃基黄药光催化氧化的机理,对于设计和研制环境友好的可降解性浮选药剂具有借鉴作用。
     研究表明,UV/US/H_2O_2法是上述方法中降解烃基黄药的最佳试验方法。UV/Fenton试剂法、UV/H_2O_2法和UV/H_2O_2/搅拌法均能降解模拟废水中的烃基黄药,并使降解后废水达到地面水中黄药最高容许浓度的要求(<0.005mg/L)。但Fenton试剂中由于Fe~(2+)的存在,增加了废水的色度,带来二次污染,因此采用最清洁的氧化剂H_2O_2。UV/H_2O_2法中烃基黄药的降解难度随着黄药烃基中碳原子数的增多而增大。其降解顺序为:乙基黄药>异丙基黄药>正丁基黄药>异丁基黄药>正戊基黄药。采用磁力搅拌对废水进行分散,改善了烃基黄药的溶解性能,使烃基黄药的降解率有所提高,进一步缩短了反应时间。但UV/H_2O_2/搅拌法的有机态硫的转化率仅为31.60%。
     通过正交试验,确定UV/US/H_2O_2法的最佳试验条件,烃基黄药模拟废水的浓度为30mg/L,废水体积为1L,滴加30%的H_2O_20.3mL,反应时间为4h。采用超声波分散可使烃基黄药分散的更加均匀,并使其能够和具有强氧化性能的·OH充分接触,使烃基黄药降解完全。反应进行3.5h时,烃基黄药的降解率均达到99%以上。而且通过红外扫描确定烃基黄药中大部分有机态硫转化为硫酸根或亚硫酸根离子,硫的转化率为66.98%,减少了有害气体H_2S和CS_2的产生。
     测定处理后废水的COD_(C_r)值,UV/H_2O_2/搅拌法和UV/US/H_2O_2法均使降解后废水的COD_(C_r)值小于50mg/L,都达到国家污水排放的一级标准。同时还测定了模拟废水的BOD_5值,考察了烃基黄药的可生化性。计算得出烃基黄药BOD/COD值<0.3,表明目前常用的烃基黄药不易生物降解。
Xanthogenate is an organic flotation reagent, which is commonly used in the flotation of non-ferrous metal sulfide minerals. This paper studied the degradation methods of alkyl xanthogenate, including ethyl xanthogenate, isopropyl xanthogenate, butyl xanthogenate, isobutyl xanthogenate and amyl xanthogenate. Treatment methods of Ultraviolet(UV) irradiation, UV/Fenton, UV/H_2O_2, and UV/H_2O_2/stirring and UV/US/H2O2 were applied to degrade the simulated wastewater of alkyl xanthogenate. The effect of alkyl xanthogenate degradation such as the oxidaion, the reaction time, dispersing ways was investigated. And the degradation properties as well as the degradation mechanism were explored and discussed in the paper. The research will help to design and develop the flotation reagents that are environmentally friendly and biodegradable.
     The research shows that the treatment method of UV/US/H2O2 is the best way to degrade alkyl xanthogenate. UV/Fenton, UV/H2O2, UV/H_2O_2stirring and UV/US/H_2O_2 can effectively degrade the alkyl xanthogenate in the simulated wastewater. After disposal, the xanthogenate's concentration reach the maximum allowable concentration requirement (<0.005 mg/L). Because there is Fe~(2+) in the Fenton reagent, which will increase the chroma and bring secondary pollution, so that the cleanest oxidant H_2O_2 was applied instead of the Fenton reagent. It found the number of carbon atoms was more, the degradation of xanthogenate was more difficult by the method of UV/H_2O_2. And its degradation sequence was: ethyl xanthogenate > isopropyl xanthogenate > butyl xanthogenate > isobutyl xanthogenate > amyl xanthogenate. Applying magnetic beater to scatter the wastewater can improve the solubility of alkyl xanthogenate, increase the degradation rate and shorten the reaction time. But the transform rate of organic sulfur was only 31.60% by the method of UV/H_2O_2/stirring.
     Through orthogonal test, determining the best experimental conditions of the UV/US/H_2O_2 method were that alkyl xanthogenate's concentration of simulated wastewater was 30 mg/L, the dosage of H_2O_2, whose concentration was 30%, was 0.3mL, reaction time was 4 hours. Applying ultrasonic can make alkyl xanthogenate disperse more uniformly, and enable alkyl xanthogenate to touch adequately with the strong oxidation·OH, so that alkyl xanthogenate can be degraded completely. The degradation rate was up to 99% after reacting 3.5h. Meanwhile the infrared absorption spectrum of alkyl xanthogenate identified that most sulfur transformed to sulfate and the transform rate was up to 66.98%, so that the production the deleterious gas H_2S and CS_22 were reduced.
     The disposed wastewater's CODc_r value was mensurated. The methods of UV/H_2O_2/stirring and UV/US/H_2O_2 made the CODc_r value below 50 mg/L, which achieved the national discharge standards. The simulated wastewater of alkyl xanthogenate's BOD_5 values was also mensurated, in order to investigate the xanthogenate's biodegradability. Calculated alkyl xanthogenate'.s BOD/COD values that all were less than 0.3, showed that alkyl xanthogenate was difficult to be biodegraded.
引文
[1] 张志铭,孟喜堂.加强氯化“三废治理”提高环境质量.钛工业进展,2001(6):10~12
    [2] 宋庆福,阳光.改善矿山环境加强环保型药剂研究.国外金属选矿,2000(2):39~40
    [3] 胡熙庚,黄和慰,毛锯凡等.浮选理论与工艺.长沙:中南大学出版社,1991,105~106
    [4] 胡为柏.浮选.北京:冶金工业出版社,1982,201~216
    [5] V.Kirjavainen, N.Schreithofer and K.Heiskanen. Effect of calium and thisulfate irons on flotation selectivity of nickel-copper ores. Minerals Engineering, 2002, 15 (1~2): 1~8
    [6] 见百熙.浮选药剂.冶金工业出版社,1981,1~12
    [7] Den Yigang,Wu Yuanxin, Li Dinghuo and Zhen Jiashen. A study on the mixing characteristics of a packed flotation column. Minerals Engineering, 2001, 14 (9): 1101~1105
    [8] 刘述忠,杨新华等.730系列起泡剂浮选应用研究.有色金属(选矿部分),2001,(4):26~28
    [9] 云锡黄茅山选厂,“重浮选—重流程处理锡矿泥生产实践”.云锡科技,1975,14~16
    [10] 朱玉霜,朱建光.浮选药剂的化学原理.中南工业大学出版社,1987,12~31
    [11] 朱建光.2002年的浮选药剂进展.国外金属矿选矿,2003(3):2~8
    [12] 黄道玉.选矿废水中残余黄药降解规律的实验研究.化工与矿物加工,2001(5):18~22
    [13] 朱建光,朱玉霜.浮选药剂.中南矿冶学院科技情报科,1982:17~28
    [14] 王淀佐.浮选剂作用原理及应用.冶金工业出版社,105~109,241~247
    [15] D.Somasundaran, Namita Deo and K. A. Natarajan, Utility of bioreagents in mineralprocessing. Minerals Engineering, 2000, 17 (2): 112~115
    [16] S.S.Vacan, J.M.Modak and K.A.Natarjan. Some recent advances in the bioprocessing of bawxite. Minerals Engineering, 2001, 62 (1~4): 173~187
    [17] G.A.Harris and R.Jia. A improved class of flotation frothers. Minerals Engineering, 2000, 58 (1~4): 35~44
    [18] 朱必成,杨菊等.高效选择性捕收剂AP的应用.有色金属(选矿部分),2002(2):36~40
    [19] 朱建光.2001年浮选药剂的进展.国外金属矿选矿,2002(2):4~7
    [20] 徐林坤,王琦.中国选矿药剂品种质量.化工与矿物加工,1997(2):16~17
    [21] 朱建光.浮选药剂.北京:冶金工业出版社,1993,2~3
    [22] 黄道玉.废水中黄药的危害及处理方法概述.化工矿山技术,1988(5):25~27
    [23] 顾泽平.含苯胺黑药废水的物化净化特性研究:[硕士学位论文].广东:广东工业大学,2006
    [24] 翟平.硫化矿浮选废水净化与回用的新工艺研究:[硕士学位论文].广东:广东工业大学,2004
    [25] 徐劲.有机浮选药剂物化净化特性研究:[硕士学位论文].广东:广东工业大学,2005
    [26] 杨运琼.硫化矿捕收剂的降解:[硕士学位论文].湖南:中南大学,2005
    [27] 邵孝峰.冶金矿业第二选矿技术进展报告会论文集.冶金黑色金属矿山情报网,冶金部马鞍山矿山研究院,1991(3):251~257
    [28] K. B. Quast. A review of hematite flotation using 12—carbon chain collectors. Minerals Engineering, 2000, 13 (13): 1361~1366
    [29] 魏以和.生物技术在矿物工程中的应用.国外金属矿选矿,1996(1):1~13
    [30] Jim whitlock.用微生物降解法处理含氰废水的优点.国外黄金参考,1990(3):28~32
    [31] P.索马桑德兰.矿物加工中的生物药剂的应用.国外金属矿选矿,2000(11):10~12
    [32] 翁建浩,王睿,黄道玉.选矿废水中残余黄药降解规律的试验研究.IM&P化工矿物与加工,2001(5):18~21
    [33] 徐劲,孙水裕,蔡河山,张萍.Fenton试剂处理选矿废水的实验研究.环境科学与技术,2005(6):125~127
    [34] 松全元.用紫外光谱法研究浮选药剂作用机理.化工矿山技术,1985(6):35~37
    [35] 许晓文,杨万龙,沈含熙.定量化学分析.天津:南开大学出版社,1996,423~424
    [36] 中华人民共和国国家标准:水质化学需氧量的测定重铬酸钾法GB11914-89
    [37] 黄伟,徐鑫,刘万超.BOD_5测定方法的研究.实验室研究与探索,2006(9):1061~1064
    [38] 奚旦立,孙裕生,刘秀英.环境监测.高等教育出版社,2002:78~88
    [39] 中华人民共和国国家标准:水质五日生化需氧量BOD_5的测定,稀释与接种法GB7488-87
    [40] 陈培榕,邓勃.现代仪器分析实验与技术.北京:清华大学出版社,103~105
    [41] 王文波,刘玉芬,申书昌.表面活性剂实用仪器分析.化学工业出版社,37~72
    [42] 孟令芝,龚淑玲,何永炳等.有机波谱分析.湖北:武汉大学出版社,2004:203~204
    [43] 武晓丽,阎铁城.近代硫酸根离子测定方法比较.内蒙古科技与经济,2004(9):87~88
    [44] 许志遂,丁根娣.环境中硫酸盐测定方法—硫酸钡比浊法的探讨和改进.理化检验-化学分册,1990,26(3):179
    [45] 魏复盛.水和废水监测分析方法指南(中册).北京:中国环境科学出版社,1994,409~410
    [46] 宋金如,刘淑娟,朱霞萍.测定水中硫酸根方法的概述.华东地质学院学报,2002(2):154~158
    [47] 测定水SO_4~(2-)方法的概述.华中地质学院学报,2002(2):25
    [48] 赵永红,成先雄,谢明辉,罗仙平.选矿废水中黄药自然降解特性的研究.矿业安全与环保,2006(3):33~34
    [49] 蒋永生,唐华龙.超声波在废水处理中的应用研究现状.重庆工商大学学报(自然科学版),2005(2):25~29
    [50] 蒋永生,高宁.超声波降解废水中十二烷基苯磺酸钠的实验研究.重庆工商大学学报(自然科学版),2004(2):25~28
    [51] 贺启环,叶招莲.超声波—紫外光氧化处理有机废水技术综述.兵工学报,2002(8):388~392
    [52] Entezar IM H, Krus P, Otson R. Effect of frequency on sonoche mical reactions Ⅲ: dissociation of carbon disulfide. Ultrasonics Sonoche mistry, 1997, 4 (1): 49~64
    [53] 冯祥芬,侯惠奇,朱绍龙.172nm辐射降解恶臭气体二硫化碳的研究.滑雪世界,2006(5):257~259
    [54] Appaw C, Adewuyi Y G. Destruction of carbon disulfide inaqueous solution by sonochemical oxidation. J HazardMater, 2002, B_(90): 237~249
    [55] 唐恢同.有机化合物的光谱鉴定.北京:北京大学出版社,103~128
    [56] 荣国斌,朱士正.波谱数据表-有机化合物的结构解析.上海:华东理工大学出版社,280~285
    [57] 朱善农等.高分子材料的剖析.科学出版社:295~300
    [58] 刘勇弟,徐寿吕.紫外-Fenon试剂的作用机理及在废水处理中的应用.环境化学,1994(4):302~306
    [59] German H Rossetti, Enrique D Albizzati, Orlando Malfano. Decomposition of Formic Acid in a WaterSolution Employing the Photo-Fenton Reaction. IndEng Chem Res, 2002, (41): 1436~1444
    [60] 陈华军,尹国杰.Fenton及类Fenton试剂的研究进展.洛阳工业高等专科学校学报,2007(3):1~5
    [61] 沈伟韧等.TiO_2光催化反应及其在废水处理中的应用.化学进展,1998,10(4):349~361
    [62] 巩建平.表面活性剂的HLB值.内蒙古石油化工,2004(29):43~44
    [63] 唐志坚,王兴,黄坤.辐射技术在水处理中的应用及其发展.环境技术,2004(3):27~29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700