用户名: 密码: 验证码:
玉米秸秆厌氧发酵生物制氢的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厌氧发酵生物制氢工艺是利用生物技术分解有机废弃物制备氢气,设备简单、操作容易,既实现了废弃物资源化,而且成本低廉,被认为是前景最好的制氢方法。本文以天然河底污泥为厌氧产氢微生物来源,以玉米秸秆为发酵底物制备氢气,考察了底物的预处理和酶解对底物产氢能力的影响,并设计正交实验探讨了发酵产氢的最优条件。
     针对玉米秸秆结构致密、难于直接被酶水解的特点,首先分别采用盐酸、氢氧化钠等对玉米秸秆进行了预处理。结果表明,采用0.6%盐酸在90℃下浸泡玉米秸秆2h,底物的发酵产氢潜势最高,预处理的效果最好,累积产氢量58.69ml·g~(-1)-CS。几乎比未处理的玉米秸秆产氢量提高120%。
     在酸处理基础上采用纤维素酶水解,考察了酶解温度、酶解时间和酶解pH值对玉米秸秆产氢能力的影响。研究结果表明,酸处理后酶解进一步提高了玉米秸秆的产氢潜势。在0.6%盐酸预处理、酶解温度50℃、酶解时间72h和酶解pH4.8的条件下,最大累积产氢量104.30ml·g~(-1)-CS,比只经过盐酸处理的玉米秸秆产氢量提高77.7%,是未处理的玉米秸秆产氢量的3倍。
     本课题组在发酵产氢生态因子的影响方面作了一系列单因素探索实验,影响玉米秸秆生物制氢的因素有很多,结合本实验室具体条件,本文选择酶解温度、酶解时间、底物浓度和发酵初始pH值为考察对象,以累积产氢量评价产氢效果,设计了4因素3水平(L_9(3~4))的正交实验。实验结论如下:(1)发酵反应过程最主要的限制因子是底物浓度;(2)经过正交实验优化后,玉米秸秆的产氢能力得到很大的提高,累积产氢量和平均产氢速率分别达到了141.29ml·g~(-1)-CS和12.31ml·g~(-1)-CS·h~(-1)。优化后的产氢实验过程如下:在90℃时,以固液比(g:mL)为1:10的0.6%盐酸浸泡底物2h,再加入与底物质量比为0.01:1的纤维素酶,在溶液pH值4.8、温度50℃下酶解72h;将上述的酶解物在36℃下以底物浓度为10g·L~(-1),初始pH值为7.0的条件下发酵。
Biohydrogen production process with anaerobic fermentation resolves the organic waste by the biological technology to produce H_2,simple equipments,easy manipulation,not only environment friendly and low cost but also sufficient supply,being considered a promising way of producing H_2.The hydrogen production of cornstalk wastes was systematically investigated through anaerobic fermentation by using the natural sludge as inoculant.The effects of pretretment,enzymatic hydrolysis,substrate concentration and fermentation initial pH value on hydrogen production potential of cornstalk were discussed in this work.
     Cornstalk was pretreated by dilute acid and sodium hydroxide,respectively,for enhancing the yield and the rate of hydrogen production of substrate.The optimal pretrcatment is that the substrate was soaked with a HCl concentration of 0.6%at 90℃for 2h.
     Batch experiments investigated the effects of hydrogen production from the fermentation substrate at different enzymatic hydrolysis conditions(temperature,time and pH).The results indicate that HCl pretreatment and enzymolysis for cornstalk wastes could obviously increase the H_2 yield form the fermentation substrate.A maximum cumulative H_2 yield of 104.30 ml·g~(-1)-CS was obtained at HCl concentration of 0.6%when the enzymatic hydrolysis condition was fixed at 50℃,time 72 h and initial pH 4.8.The yield was much larger than the corresponding H_2 yield of 58.69 ml·g~(-1)-CS only pretreated by acid at 0.6%previously, increasing by about 77.7%.and by about 3-fold as compared with the un-pretreated raw cornstalk wastes.
     The comprehensive influence of pretreatment and fermentation condition for fermentative H_2 production was investigated using orthogonal design method and the optimum conditions were obtained.An orthogonal experimental design of L_9(3~4) was used in this experimental design,considering four important parameters(enzymatic temperature,enzymatic time, substrate concentration and fermentation initial pH) and the cumulative hydrogen yield was the optimization criteria.The results indicate that:(1) Substrate concentration had the largest influence on hydrogen production,and fermentation initial pH was more influential than enzymatic temperature and enzymatic time.(2) When the pretreated substrate with the concentration of 10 g·L~(-1) was fermented at 36℃,a maximum cumulative H_2 yield of 141.29 influence on hydrogen production,and fermentation initial pH was more influential than enzymatic temperature and enzymatic time.(2) When the pretreated substrate with the concentration of 10 g·L~(-1) was fermented at 36℃,a maximum cumulative H_2 yield of 141.29 ml·g~(-1)-CS and the average H_2 production rate of 12.31 ml·g~(-1)-CS·h~(-1) were obtained through an optimal pretreatment process:the substrate pretreated by a HCl concentration of 0.6%for 2 h at 90℃(the ratio of solid to liquid was 1g:10 ml),as well as subsequently degraded by cellulase catalysis(the ratio of substrate to enzyme was 100:1) for 72 h at 50℃and the initial pH of 4.8.
引文
[1]韩鲁佳,刘向阳,巧娟等.中国农作物秸秆资源及其利用现状[J].农业工程学报,2002,18(3):87-91.
    [2]卞有生.生态农业中废弃物的处理与再生利用[M].北京:化学工业出版社,2000:125-136.
    [3]《非常规饲料资源的开发与利用》研究组.非常规饲料资源的开发与利用[M].北京:中国农业出版社,1996,14-18.
    [4]Li R.Q.,Xi Y.Y.,Cao Z.L.,et al.Comprehensive utilization of cellulose-based wastes[J].China Environmental Science,2002,22(1):24-27.
    [5]Zhu L.F.,Zhang B.L.,Liang G.B.,et al.Methanol synthesis from cornstalk by the thermo chemical method[J].J Henan Agricultural University,2003,37(4):400-405.
    [6]杨懂艳.生物与化学预处理对玉米秸秆生物气产量的影响研究[D].北京:北京化工大学,2004.
    [7]Demirbas A..Biomass resources for energy and chemical industry[J].Energy Educ Sci Technol,2000,5(1):21-45.
    [8]Wang Y.B..The most promising energy in the 21 century—hydrogen[J].Energy Research Information,2003,19(2):63-68.
    [9]高志坚.玉米秸秆厌氧消化试验研究[D].北京:北京化工大学,2004.
    [10]Sahlstrom L..A review of survival of pathogenic bacteria in organic waste used in biogas plant[J].Bioresour Technol,2003,87(2):161-166.
    [11]郑万里.热碱预处理对秸秆厌氧发酵的影响[D].北京:中国农业大学,2004.
    [12]Jeongsik K.,Chulhwan P.,Tak-Hyun K.,et al.Effects of various pretreatment for enhanced anaerobic digestion with activated sludge[J].J Bioscience Bioeng,2003,95(3):270-275.
    [13]Kapdan I.K.,Kargi F..Bio-hydrogen production from waste materials[J].Enzyme Microb Technol,2006,38(5):569-582.
    [14]Zhao Q.L..Important intermediate in anaerobic digestion-organic acid[J].J Harbin Building Technol,1996,29(5):32-38.
    [15]Jeyaseelan S.,Matsuo T..Effects of phase separation in anaerobic digestion on different substrates[J].Water Sci Technol,1995,31(9):153-162.
    [16]Ueno Y.,Otsuka S.,Morimoto M..Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture[J].J Ferment Bioeng,1996,82(2):194-197.
    [17]任南琪,王宝贞,马放.厌氧活性污泥工艺生物发酵产氢能力研究[J].中国环境科学,1995,15(6):401-405.
    [18]Ren N.Q.,Li J.Z.,Li B.K.,et al.Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system[J].Int J Hydrogen Energy,2006,31(15):2147-2157.
    [19]Li Y.F.,Ren N.Q.,Yang C.P.,et al.The molecular characterization and hydrogen production of a new species of anaerobe[J].J Environmental Science Health,2005,40(10):1929-1938.
    [20]Li J.Z.,Ren N.Q..Study and Development in quo of hydrogen production biotechnology[J].Energy Engineering,2001,2(2),18-20.
    [21]Tanisho S.,Kuromotto M..Hydrogen production from industrial wastewater by anaerobic microflora in chemo state culture[J].J Ferment Bioeng,1996,82(2):194-197.
    [22]Yokoi H.,Maeda Y.,Hayashi S.,et al.H_2 production by immobilized cells of Clostridium butyricnm on porous glass beads[J].Bioresour Technol,1997,11(6):431-433.
    [23]Haruhiko Y.,Tadafumi T.,Jun H.,et al.H_2 production from starch by a mixed culture of Clostridinm butyricum and Enterobacter aerogenes[J].Biotechnol.Lett,1998,20(2):143-147.
    [24]Chadwick L.J.,Irgens R.L..Hydrogen gas production by an Ectothiorhodospira vacuolata strain[J].Appl Environ Microbial,1991,57(2):594-596.
    [25]王相晶.产氢发酵细菌B49生理特性及其固定化应用研究[D].哈尔滨:哈尔滨工业大学,2003.
    [26]林明.高效产氢发酵新菌种的产氢机理及生态学研究[D].哈尔滨:哈尔滨工业大学,2002.
    [27]Chen W.M.,Tseng Z.J.,Lee K.S.,et al..Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge[J].Int.J.Hydrogen Energy,2005,30(10):1063-1070.
    [28]Pan C.M.,Fan Y.T.,Zhao P.,et al..Fermentative hydrogen production by the newly isolated Clostridium beijerinckii Fanp3[J].Int.J.Hydrogen Energy,2008,33(20):5383-5391.
    [29]Roychowhury S.,Cox D.,Levandowsky M..Production of hydrogen by microbial fermentation[J].Int J Hydrogen Energy,1988,13(7):407-410.
    [30]Lin C.Y.,Lay C.H..A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora[J].Int J Hydrogen Energy,2005,30(3):285-292.
    [31]Tatsuya N..Feasibility of biological hydrogen production from organic fraction of municipal solid waste[J].Water Research,1999,33(11):2579-2586.
    [32]Zhang M.L.,Fan Y.T,Lay J.J..Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures[J].Biomass Bioenergy,2007,31(4):250-254.
    [33]Fan Y.T.,Zhang G.S..Biohydrogen-production from beer lees biomass by cow dung compost[J].Biomass Bioenergy,2006,30(5):493-496.
    [34]Fan Y.T,Zhang Y.H.,Zhang S.F..Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost[J].Bioresour Technol,2006,97(3):500-505.
    [35]朱章玉,俞吉安,林志新等.光合细菌的研究及其应用[M].上海:上海交通大学出版社,1991:142-173.
    [36]Lay J.J.,Fan K.S..Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge[J].Int J Hydrogen Energy,2003,28(12):1361-1367.
    [37]Mohan S.V.,Bhaskar Y.V.,Krishna P.M.,et al.Biohydrogen production from chemical wastewater as substrate by selectively enriched anaerobic mixed consortia:Influence of fermentation pH and substrate composition[J].Int J Hydrogen Energy,2007,32(13):2286-2295.
    [38]Wang Y.,Mu Y.,Yu H.Q..Comparative performance of two up-flow anaerobic biohydrogen-producing reactors seeded with different sludges[J].Int J Hydrogen Energy,2007,32(8):1086-1094.
    [39]Liu G.,Shen J..Effects of culture medium and medium conditions on hydrogen production from starch using anaerobic bacteria[J].J Bioscience Bioeng,2004,98(4):251-256.
    [40] Yokoi H., Maki R., Hirose J., et al. Microbial production of hydrogen from starch manufacturing wastes[J]. Biomass Bioenergy, 2002,22(5): 389-395.
    [41] Mohan S. V., Babu V. L., Sarma P. N.. Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): Effect of organic loading rate[J]. Enzyme Microb Technol, 2007,41(4): 506-515.
    [42] Yang H., Shao P., Lu T., et al. Continuous biohydrogen production from citric acid wastewater via facultative anaerobic bacteria[J]. Int J Hydrogen Energy, 2006, 31(10), 1306-1313.
    [43] Soni S. K, Kaur A.. A solid state fermentation based bacterial a-amylase and fungal glucoamylase system and its suitability for the hydrolysis of wheat starch[J]. Process Biochemistry, 2003, 39(2): 185-192.
    [44] Gao Z. J., Li X. J., Yang D. Y.. Anaerobic digestion of cornstalk for biogas production: ambient vs. mesophilic temperature[J]. Transactions of the CSAE, 2003,19(5): 214-217.
    [45] Curreli N., Sanjust E.. Complete and efficient enzymic hydrolysis of pretreated wheat straw[J], Process Biochemistry, 2002, 37(9): 937-941.
    [46] Lu Y., Zhang W. D.. Research on potential of the hydrogen fermentation with pig dung [J]. Energy Engineering, 2003, 2(7): 26-28.
    [47] Lay J. J.. Biohydrogen Generation by MesopHilic Anaerobic Fermentation ofMicrocrystalline Cellulose[J]. J Biotechnol Bioeng, 2001, 74(4): 280-287.
    [48] Fang H. H. P., Li C. L, Zhang T.. Acidophilic biohydrogen production from rice slurry[J]. Int J Hydrogen Energy, 2006, 31(6): 683-692.
    [49] Zhang R. H., Zhang Z. Q.. Biogasification of rice straw with an anaerobic-phased solids digester system[J]. Bioresour Technol, 1999, 68(3): 235-245.
    [50] Gong M. L., Ren N. Q, Li Y. F.. Comparison of biohydrogen production capacity from different types of fermentation in continuous-flow reactors[J]. J Harbin Ins Technol, 2006, 38(11): 411-415.
    [51] Ren N. Q., Gong M. L., Xing D. F.. Continuous Operation of Hydrogen Bio-Production Reactor with Ethanol-Type Fermentation[J]. Environmental Science, 2004, 25(6), 113-116.
    [52] Ren N. Q., Wang B. Z, Huang J. C. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor[J].J Biotechnol Bioeng,1997,54(5):428-433.
    [53]Tanisho S.,Suzuki Y.,Wakao N..Fermentative Hydrogen Evolution by Enterobacter aerogenes Strain E82005[J].Int J Hydrogen Energy,1987,12(9):623-627.
    [54]Das D.,Kotay S.M..Microbial hydrogen production with Bacillus coagulants IIT-BT S1isolated from anaerobic sewage sludge[J].Bioresour Technol,2007,98(6):1183-1190.
    [1]Lin M.,Ren N.Q.,Wang A.J..Selection and improvement of culture for hydrogen producing bacteria[J].J Harbin Institute Technol,2003,35(4):398-402.
    [2]Ren N.Q.,Li J.Z.,Li B.K.,et al.Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system[J].Int J Hydrogen Energy,2006,31(15):2147-2157.
    [3]Hawkes F.R.,Dinsdale R.,Hawkes D.L.,et al.Sustainable fermentative hydrogen production:challenges for process optimization[J].Int J Hydrogen Energy,2002,27(11-12):1339-1347.
    [4]Kim S.H.,Han S.K.,Shin H.S..Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge[J].Int J Hydrogen Energy,2004,29(15):1607-1616.
    [5]任保增,唐大惠,李扬.厌氧发酵生物制氢试验研究[J].郑州大学学报,2004,25(4):64-66.
    [6]Li Y.F.,Zheng G.X.,Hu L.J.,et al.Study on judging hydrogen-producing bacteria by gas chromatography analysis of acidic end products[J].J Harbin University of Commerce,2005,21(1):24-26.
    [7]刘艳玲,任南琪,刘敏等.气相色谱法分析厌氧反应器中的挥发性脂肪(VFA)[J].哈尔滨建筑大学学报,2000,33(6):31-34.
    [1]岳建芝,张杰,徐桂转.玉米秸秆主要成分及热值的测定与分析[J].河南农业科学,2006,8(9):23-24.
    [2]熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木质素的测定[J].粮食与饲料工业,2005,8(8):40-41.
    [3]Ueno Y.,Kawai T.,Sato S.,et al.Morimoto M.Biological production of hydrogen from cellulose by mixed anaerobic microflora[J].J Ferment Bioeng,1995,79(4):395-397.
    [4]高洁,汤烈贵.纤维素科学[M].科学出版社,1996,183-189.
    [5]Sun Y.,Cheng J.Y..Hydrolysis of lignocellulosic materials for ethanol production:a review[J].Bioresour Technol,2002,83(1):1-11.
    [6]Martoanez J.M.,Granado J.M.,Montane A.D.,et al.Fractionation of residual lignocellulosics by dilute-acid prehydrolysis and alkaline extraction:application to almond shells[J].Bioresour Technol,1995,52(3):59-67.
    [7]Zhang M.L.,Fan Y.T.,Lay J.J..Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures[J].Biomass Bioenergy,2007,31(4):250-254.
    [8]戚峰,程军,周俊虎.碱性预处理方法对秸秆发酵产氢影响的实验研究[A].第六届全国氢能学术会议论文集[C],2005,227-230.
    [9]Lin J.G.,Chang C.N.,Chang S.C..Enhancement of anaerobic digestion of waste activated sludge by alkaline solubilization[J].Bioresour Technol,1997,62(3),85-90.
    [10]Vlyssides A.G.,Karlis P.K..Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion[J].Bioresour Technol,2004,91(2):201-206.
    [11]Kim T.H.,Kim J.S.,Sunwoo C.S.,et al.Pretreatment of corn stover by aqueous ammonia[J].Bioresour Technol,2003,90(1):39-47.
    [12]Kim T.H.,Lee Y.Y..Fractionation of corn stover by hot-water and aqueous ammonia treatment[J].Bioresour Technol.2006,97(2):224-232.
    [13]Luo Q.M.,Li X.J.,Zhu B.N.,et al.Anaerobic bio-gasification of NaOH-treated cornstalk[J].Transactions of the CSAE,2005,21(2):111-115.
    [1]高培基.纤维素酶降解机制及纤维素酶分子结构与功能的研究进展[J].自然科学进展,2003,13(1):21-29.
    [2]Woodward J..Synergism in cellulase systems[J].Bioresour Technol,1991,36(1):67-75.
    [3]张继泉,王瑞明,孙玉英.里氏木酶生产纤维素酶的研究进展[J].饲料工业,2003,24(1):9-13.
    [4]Nummi M.,Miku-Paavola M.L.,Enari T.M.,et al.Isolation of cellulase by means of biospecific sorption on amorphous cellulose[J].Analytical Biochem,1981,116(1):137-141.
    [5]Cavaco-Paulo A..Mechanism of cellulase action in textile processes[J].Carbohydrate Polymers,1998,37(3):273-277.
    [6]谷嵩,刘昱辉.纤维素酶的研究进展[J].安徽农业科,2007,35(25):7736-7737.
    [7]Xia L.M.,Shen X.L..High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue[J].Bioresour Technol,2004,91(3):259-262.
    [8]Xia L.M.,Cen P.L..Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry[J].Process Biochemistry,1999,34(9):909-912.
    [9]周文龙.酶在纺织中的应用[M].中国纺织出版社,2002,15-26.
    [10]杨小寒.废弃植物纤维水解的研究[D].东华大学,2003.
    [11]Marten E.,Muller R.J.,Deckwer W.D..Studies on the enzymatic hydrolysis of polyesters.I.Low molecular mass model esters and aliphatic polyesters[J].Polymer Degradation Stability,2003,80(3):485-501.
    [12]张树政.酶制剂工业[M].北京,科学出版社,1998.
    [13]赵文惠.固态发酵生产纤维素酶及纤维原料酶法糖化的研究[D].浙江大学,2002.
    [14]Cammarota M.C.,Freire D.M.G..A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content[J].Bioresour Technol,2006,97(17):2195-2210.
    [15]Sun Y.,Cheng J..Hydrolysis of lignocellulosic materials for ethanol production:a review[J].Bioresour Technol,2002,83(1):1-11.
    [16]陈洪章.纤维质原料微生物转化与生物量全利用[R].北京:中国科学院化工冶金研究所,1998.
    [17]Eriksson T.,Borjesson J.,Tjerneld F..Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose.Enzyme Microb Technol,2002,31(3):353-364.
    [18]Cammarota M.C.,Freire D.M.G..A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content[J].Bioresour Technol,2006,97(17):2195-2210.
    [19]Yanez R.,Alonso J.L.,Parajo J.C..Enzymatic saccharification of hydrogen peroxide-treated solids from hydrothermal processing of rice husks.Process Biochemistry,2006,41(6):1244-1252.
    [20]Soni S.K.,Kaur A..A solid state fermentation based bacterial a-amylase and fungal glucoamylase system and its suitability for the hydrolysis of wheat starch[J].Process Biochemistry,2003,39(2):185-192.
    [21]Curreli N.,Sanjust E..Complete and efficient enzymic hydrolysis of pretreated wheat straw[J].Process Biochemistry,2002,37(9):937-941.
    [22]Saha B.C.,Cotta M.A..Lime pretreatment,enzymatic saccharification and fermentation of rice hulls to ethanol[J].Biomass Bioenergy,2008,32(10):971-977.
    [23]Zhang M.L.,Fan Y.T.,Lay J.J..Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures[J].Biomass Bioenergy,2007,31(4):250-254.
    [1]Fan Y.T.,Zhang G.S.,Guo X.Y.,et al.Biohydrogen production from beer less biomass by cow dung compost[J].Biomass Bioenergy,2006,30(5):493-496.
    [2]Li Z.,Wang H.,Bai J.B..Effects of pH value and substrate concentration on hydrogen production from the anaerobic fermentation of glucose[J].Int J Hydrogen Energy,2008,33(24):7413-7418.
    [3]Fan Y.T.,Li C.L.,Lay J.J.,et al.Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost[J].Bioresour Technol,2004,91(2),189-193.
    [4]Zhang M.L.,Fan Y.T.,Lay J.J..Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures[J].Biomass Bioenergy,2007,31(4),250-254.
    [5]Ren N.Q.,Gong M.L.,Xing D.F..Continuous Operation of Hydrogen Bio-Production Reactor with Ethanol-Type Fermentation[J].Environmental Science,2004,25(6),113-116.
    [6]Gong M.L.,Ren N.Q.,Li Y.F.,et al.Comparison of biohydrogen production capacity from different types of fermentation in continuous-flow reactors[J].J Harbin Ins Technol,2006,38(11),1-5.
    [7]Ren N.Q.,Wang B.Z.,Huang J.C..Ethanol-type fermentation from carbohydrate in high rate acidogenic-reactor[J].J Biotechnol Bioeng,1997,54(5),428-433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700