用户名: 密码: 验证码:
芽孢杆菌产β-甘露聚糖酶的纯化及其稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-甘露聚糖酶是一种重要的半纤维素酶,应用广泛,多采用微生物发酵制备。本文首先对发酵培养基进行简化与优化,并通过分离纯化制得高纯酶;进而运用圆二色、二级结构预测等方法,对酶的结构及稳定性进行研究,通过添加稳定化试剂并优化操作参数,提高了喷雾干燥产品的稳定性。主要工作如下:
     对发酵培养基源、源及无机盐进行筛选优化,确定了简化发酵培养基组成;最终发酵液的单位酶活成本较原始发酵培养基降低63%,大大提高了生产收益,且色素及杂质的含量也明显低于原始培养基,有利于产品的后续精制。
     β-甘露聚糖酶粗酶液经盐析、超滤、离子交换层析、凝胶层析及羟基灰石层析制得电泳纯酶蛋白。电泳分析和凝胶排阻色谱分析估算所得β-甘露聚糖酶分子量一致,约为39kDa。
     基于确定的氨基酸序列,运用四种算法-APSSP2、SSPRO4、PSIPRED、PHD对β-甘露聚糖酶的二级结构及部分性质进行了预测和计算,得到疏水性标度值及滴定曲线,pI=5.505,分子量38005.4。
     利用远紫外CD对比分析了β-甘露聚糖酶的二级结构和酶活随温度和pH的变化规律,初步探讨了二级结构变化对酶活力的影响,以优选出的CDSSTR算法计算出β-甘露聚糖酶二级结构含量为:α-螺旋42%,β-折叠13%,转角17%,无规卷曲28%,其三级结构类型为:α+β型。
     考察了四种添加剂(NaCl、淀粉、蔗糖、糊精)在不同浓度下对喷雾干燥制备β-甘露聚糖酶稳定性的影响,结果表明:添加蔗糖和糊精可大幅提高酶的热稳定性,加入50 mg/ml糊精,酶活提高50%,效果最佳;通过响应面法优化,确定了喷雾干燥三项主要操作参数的最优值:加料流率4.3mL/min,干燥空气流率31.3L/h,空气进口温度177℃,此时酶活较优化前提高21.9%,达3715.9U/g。
β-Mannanase is an important hemicellulase, which is widely used and usually produced by microbial fermentation method. In this thesis, firstly, the fermentation medium was simplified and optimized, and the purified enzyme was obtained by separating and purifying. Then, the circular dichroism and the prediction of protein secondary structure were employed in investigating the structures and stabilization ofβ-mannanase. Finally, the stability of spray-drying product was improved by adding stabilizer and optimizing operating parameters. The main results were shown as following:
     The nitrogen sources, carbon sources and inorganic salts of the fermentation medium were screened and optimized, the simplified fermentation medium was determined. The unit enzyme activity cost of final fermentative solution deceased about 63% comparing with that before optimization, which suggested that the benefit was largely increased. Meanwhile, the pigment and impurity contents of the fermentative solution were obviously lower than that before optimization, which is beneficial to the subsequent enzyme refining.
     Theβ-mannanase of electrophoretic purity was prepared from crude enzyme by ammonium sulfate precipitation, UF, DEAE-52 sepharose, SephadexG-100, and hydroxyapatite chromatography. The molecular weight ofβ-mannanase estimated through GEC is consistent with that through SDS-PAGE, which is about 39kDa.
     Four sequence analysis methods-APSSP2, SSPRO4, PSIPRED and PHD were used to predict the secondary structure and some properties ofβ-mannanase based on its amino acid sequence. The results indicated the pI ofβ-mannanase was 5.505 and the molecular weight was 38005.4. The hydrophobicity curve and titration curve were also predicted.
     Through investigating changes in secondary structure and enzyme activity ofβ-mannanase at different temperature and pH by far UV circular dichroism, the effects of secondary structure on enzyme stabilization were preliminarily studied. The secondary structure relative contents ofβ-mannanase were calculated by the optimal CDSSTR method asα-helix 42%,β-sheet 13%, turns 17%, and random coil 28%. And the tertiary structure class ofβ-mannanase was also determined asα+β.
     The effects of four additives (NaCl, sucrose, amylum, and dextrin) on the stability ofβ-mannanase during spray drying were discussed. The experimental results of the above additives with various concentrations were shown that the addition of sucrose and dextrin might largely enhance the thermal stability of enzyme during spray drying, and the maximum activity of beta-mannanase was increased about 50 % when dextrin was 50 mg/ml. Furthermore, through RSM, the optimal conditions of spray drying were calculated as follows: feed flow rate of 4.3 mL/min, heated air flow rate of 31.3 L/h, and inlet temperature of 177 oC. Under these conditions,β-mannanase activity of 3715.9 U/g was experimentally obtained, which increased about 21.9 % comparing with that before optimization.
引文
[1]Mayeda M., Preliminary communication on mannanase and levidulinase, Journal of Biochemistry (Tokyo, Japan), 1922, 1: 131~137
    [2]Pringsheim H., Thilo E., Separation of the enzymes of barley malt. III. Amylase and maltase, Biochemische Zeitschrift, 1928, 209: 99~102
    [3]Courtois JE, Petek F, Kada T., Researches on galactomannans.Ⅱ.Action of taka-diastase on the galactomannan of ucerne, Bull Soc Chim Biol, 1958, 40: 2031~2037
    [4]Williams PP, Doetsch RN, Microbial dissimilation of galactomannan, J Gen Microbiol, 1960, 22: 635~644
    [5]Reese T, Shibata Y,β-Mannanase of fungi, Can J Microbiol, 1965, 11: 167~183
    [6]Shimahara H, Suzuki H, Sugiyama N, et al., Partial purification ofβ-mannanases from the konjac tubers and their substrate specificity in relation to the structure of konjac glucomannan, Agric Biol Chem, 1975, 39: 301~312
    [7]吴襟,β-1,4-D-甘露聚糖酶的纯化和性质: [硕士学位论文],中科院微生物所, 1997
    [8]Araujo A, Ward OP, Mannanase components from Bacillus pumilus, Appl Environ Microbiol, 1990, 56: 1954~1956
    [9]Araujo A, Ward OP, Hemicellulases of Bacillus spcies: preliminary comparative studies on production and properties of mannanases and galactanases, J Appl Bacteriol, 1990, 68: 253~261
    [10]Ooi T, Kikuchi D, Purification and some properties ofβ-mannanase from Bacillus sp., World J Microbiol Biotechnol, 1995, 11: 310~314
    [11]崔福绵,石家骥,鲁茁壮,枯草芽孢杆菌中性β-甘露聚糖酶的产生与性质,微生物学报, 1999, 39: 60~63
    [12]Yamaura I, Matsumoto T, Funatsu M, et al., Purification and some properties of endo-1, 4-β-D-mannanase from Pseudomonas sp. PT-5, Agric Biol Chem, 1990, 54: 2425~2427
    [13]Araki T, Tamaru Y, Morishita T,β-1,4-Mannanases from marine Bacterial, Vibrio spp. MA-129 and MA-138, J Gen Appl Microbiol, 1992, 38: 343~351
    [14]Araki T, Purification and characterization of an endo-β-mannanase from Aeromonas sp. F-25, J Fac Agr Kyushu Univ., 1983, 27: 89~98
    [15]Takahashi R, Kusakabe I, Kobayashi H, et al., Purification and some properties of mannanase from Streptomyces sp., Agric Biol Chem, 1984, 48: 2189~2195
    [16]Marga F, Ghakis C, Dupont C, et al., Improved production of mannanases by Streptomyces lividans, Appl Environ Microbiol, 1996, 62: 4656~4658
    [17]Montiel MD, Rodriguez J, Pérez-Leblic MI, et al., Screening of mannanases in actinomycetes and their potential application in the biobleaching of pine kraft pulps, Appl Microbiol Biotechnol, 1999, 52: 240~245
    [18]Kremnicky L, SlávikováE, Mislovi?ováD, et al., Production of extracellularβ-mannanase by yeast and yeast-like microorganisms, Folia Microbiol, 1996, 41: 43~47
    [19]Tsujisaka Y, Hiyama K, Takenishi S, et al., Studies on the hemicellulase. Part III. Purification and some properties of mannanase from Aspergillus niger van Tieghem sp., Nippon Nogeikagaku Kaishi, 1972, 46: 155~161
    [20]Bouquelet S, Spik G, Montreuil J, Properties of aβ-mannanase from Aspergillus niger, Biochim Biophys Acta, 1978, 552: 521~530
    [21]Civas A, Eberhard R, Dizet PL, et al., Glycosidases induced in Aspergillus tamarii. Secretedα-D-galactosidase andβ-D-mannanase, Biochem J, 1984, 219: 857~863
    [22]Hashimoto Y, Fukumoto J, Studies on the enzyme treatment of coffee beans. Purifications of mannanase from Rhizopus niveus and its action on coffee mannan, Nippon Nogeikagaku Kaishi, 1969, 43: 317~322
    [23]Torrie Jp, Senior DJ, Production ofβ-mannanases by Trichoderma harzianum E58, Appl Microbiol Biotechnol, 1990, 34: 303~307
    [24]St?lbrand H, Siika-aho M, Tenkanen M, et al., Purification and characterization of twoβ-mannanases from Trichoderma reesei, J Biotechnol, 1993, 29: 229~242
    [25]Horikoshi K, Akiba T, Alkalophilic microorganisms, Tokyo: Japan Scientific Societies Press, 1982.
    [26]Akino T, Nakamura N, Horikoshi K, Production ofβ-mannosidase andβ-mannanase by an alkalophilic Bacillus sp., Appl Microbiol Biotechnol, 1987, 26: 323~327
    [27]马延和,田新玉,周培谨, et al.,碱性β-甘露聚糖酶的产生条件及一般特性,微生物学报, 1991, 31: 443~448
    [28]Gomes J, Steiner W, Production of a high activity of an extremely thermostableβ-mannanase by the thermophilic eubacterium Rhodothermus marinus grown on locust bean gum, Biotechnol Lett, 1998, 20: 729~733
    [29]McCutchen CM, Duffaud GD, Leduc P, et al., Characterization of extremely thermostable enzymatic breakers (α-1,6-galactosidase andβ-1,4-mannanase) from the hyperthermophilic bacterium Thermotoga neapolitana 5068 for hydrolysis of guar gum, Biotechnol Bioeng, 1996, 52: 332~339
    [30]Puchart V, Katapodis P, Biely P, et al., Production of xylanases, mannanases, and pectinases by the thermophilic fungus Thermomyces lanuginosus, EnzymeMicrob Technol, 1999, 24: 355~361
    [31]Johnson KG, Exocelluarβ-mannanases from hemicellulolytic funji, Microbiol Biotechnol, 1990, 60(2): 209~217
    [32]李江华,房峻,邬显章,黑曲毒酸性β-甘露聚糖酶的摇瓶发酵条件,江苏食品与发酵, 2002, 4: 16~18
    [33]马建华,高扬,牛秀田, et al.,枯草芽孢杆菌中性β-甘露聚糖酶的纯化及性质研究,中国生物化学与分子生物学报, 1999, 15(1): 79~82
    [34]杨文博,沈庆,佟树敏,产β-甘露聚糖酶地衣芽孢杆菌的分离筛选及发酵条件,微生物学通报, 1995, 22: 154~157
    [35]Emi S, Fukumoto J, Yumamoto T, Crystallization and some properties of mannanase, Agric Biol Chem, 1972, 36: 991~1101
    [36]Mendoza NS, Arai M, Kawaguchi T, et al., Isolation of mannan-utilizing bacteria and the culture conditions for mannanase production, World J Microbiol Biotechnol, 1994, 10: 51~54
    [37]Rebert FH, Arch Microbiol, 1979, 122: 297~299
    [38]Rogalski J, Hatakka A, Longa B, et al., 1993, 13: 53~57
    [39]田亚平,金其荣,黑曲霉β-D-甘露聚糖酶的纯化及基本性质,无锡轻工大学报, 1998, 17(3): 16~21
    [40]陈騊声,酶制剂生产技术,北京:化学工业出版社, 1994.
    [41]徐明波,马贤凯,基因工程产物提纯工艺的设计,生物工程进展, 1995, 15: 52~57
    [42]Senstad C, Mattiasson B, Affinity-precipitation using chitosan as ligand carrier, Biotechnol Bioeng, 1989, 33: 216~220
    [43]LinnéE, Garg N, Kaul R, et al., Evaluation of alginate as ligand carrier in affinity precipitation, Biotechnol Appl Biochem, 1992, 16: 48~56
    [44]Gupta MN, Dong GQ, Mattiasson B, Purification of endo-polygalacturonase by affinity precipitation using alginate, Biotechnol Appl Biochem, 1993, 18: 321~327
    [45]Woll JM, Hatton TA, Yarmush ML, Biotechnol Progr, 1989, 5: 57
    [46]Kelly BD, Wang DIC, Hatton TA, Biotechnol Bioeng, 1993, 42: 1199~1208
    [47]Brandt S, Goffe RA, Kessler SB, et al., Membrane-based affinity technology for commercial scale purifications, Biotechnology, 1988, 6: 779~782
    [48]Ling TGI, Mattiasson, Membrane filtration affinity purification (MFAP) of dehydrogenases using cibacron blue, Biotechnol Bioeng, 1989, 34: 1321~1325
    [49]Cordes A, Hossdorf J, Kula MR, Biotechnol Bioeng, 1987, 30: 514
    [50]Kirchberger J, J Chromatogr, 1991, 557: 325
    [51]刘国诠,生物工程下游技术,北京:化学工业出版社, 1993.
    [52]师治贤,王俊德,生物大分子的液相色谱分离和制备(第二版),北京:科学出版社, 1996.
    [53]田新玉,徐毅,马延和,嗜碱芽饱杆菌N16一β一甘露聚糖酶的纯化和性质,微生物学报, 1993, 33(2): 115~121
    [54]杨文博,佟树敏,沈庆, et al.,地衣芽孢杆菌β一甘露聚糖酶的纯化及酶学性质,微生物学通报, 1995, 22(6): 338~342
    [55]余红英,孙远明,王玮军, et al.,枯草芽孢杆菌SA-22β-甘露聚糖酶纯化及其特性,生物工程学报, 2003, 19(3): 327~331
    [56]柴萍萍,枯草芽孢杆菌(Bacillus subtilis)WY45产β-甘露聚糖酶的纯化与性质研究:中国农业大学, 2005
    [57]王和平,范文斌,张七斤, et al.,里氏木霉RutC-30β-甘露聚糖酶的制备和纯化方法的研究,内蒙古哦农业大学学报, 2003, 24(3): 44~48
    [58]Ademark P, Varga A, Medve J, et al., Softwood hemicellulose-degarding enzymes from Aspergillus niger: purification and properties of a beta-mannanase, J Biotechnol, 1998, 63(3): 199~210
    [59]Yosida S, Sako Y, Uchida A, Purification, properties, and N-terminal amino acid sequences of guar gum-degrading enzyme from Bacillus circulans K-1, Biosci Biotechnol Biochem, 1997, 61(2): 251~255
    [60]阎隆飞,孙之荣,蛋白质分子结构,北京:清华大学出版社, 1999.
    [61]Zou Chenglu, The second genetic code, Science Bulletin, 2000, 45(16): 1681~1687
    [62]Wang Zhixin, The current situation and prospect of protein stucture prediction, Chemistry of Life, 1998, 18(6): 19~22
    [63]Zhao Guoping, Bioinformatics, Beijing: Science Press, 2002.
    [64]Cuff JA, Barton GJ, Application of multiple sequence alignment profiles to improve protein secondary struture prediction, PROTEINS: Stucture, Function, and Genetics, 2000, 40: 502~511
    [65]Dariusz Przybylski, Burkhard Rost, Alignments grow, secondary structure prediction improves, PROTEINS: Stucture, Function, and Genetics, 46: 197~205
    [66]Pan Xianming, Multiple linear regression for secondary struture prediction, PROTEINS: Stucture, Function, and Genetics, 2001, 43: 256~259
    [67]齐建勋,肖奕,科学通报, 2002, 47(6): 425~430
    [68]Garnier J, Analysis of the accuracy and implications of simple methods for prediction the secondary structure of globular protein, J Mol Biol, 1978, 120: 97~120
    [69]Garnier J, GOR secondary structure prediction method IV, Meth Enzyme, 1996, 266: 540~553
    [70]Ouali M., King R.D., Cascaded multiple classifiers for secondary structure prediction, Prot. Sci, 2000, 9: 1162~1176
    [71]Kneller DG, Cohen FE, Langridge R, Improvements in protein secondary structure prediction by enhanced neural networks, J Mol Biol, 1990, 214: 171~182
    [72]Rost B, Sander C, Prediction of protein secondary structure at better than 70% accuracy, J Mol Biol, 1993, 232: 584~599
    [73]Baldi P, Brunak S, Frasconi P, et al., Exploition the pase and the future in protein secondary struture prediction, Bioinformatics, 1999, 15: 937~946
    [74]Jones DT, Protein secondary structure prediction based on position-specific scoring matrices, J Mol Biol, 1999, 292: 195~202
    [75]Frishman D, Argos P, Incorporation of non-local interactions in protein secondary structure prediction from the aminoacid sequence, Prot Eng, 1996, 9: 133~142
    [76]Geourjon C, Deleage G, Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments, Comput Appl Biosci, 1995, 11(6): 681~684
    [77]J. Cheng, A. Randall, M. Sweredoski, et al., SCRATCH: a Protein Structure and Structural Feature Prediction Server, Nucleic Acids Research, 2005, 33: 72~76
    [78]张海霞,唐焕文,张立震,蛋白质二级结构预测方法的评价,计算机与应用化学, 2003, 20(6): 735~740
    [79]S. M. Kelly, T. J. Jess, N. C. Price, How to study proteins by circular dichroism, Biochimica Et Biophysica Acta-Proteins and Proteomics, 2005, 1751(2): 119-139
    [80]沈灿星,梁宏,何锡文,圆二色分析蛋白质构象的方法及研究进展,分析化学, 2004, 32(2): 388-394
    [81]Greenfie.N, G. D. Fasman, Computed circular dichroism spectra for evaluation of protein conformation, Biochemistry, 1969, 8(10): 4108-&
    [82]N. Sreerama, R. W. Woody, Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set, Analytical Biochemistry, 2000, 287(2): 252-260
    [83]L. Whitmore, B. A. Wallace, DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data, Nucleic Acids Research, 2004, 32: W668-W673
    [84]Sergei Yu. Venyaminov, konstantin S. Vassilenko, Determination of protein tertiary structure class from cirluar dichroism spectra, Analytical Biochemistry, 1994, 222: 176~184
    [85]Narasimha Sreerama, Sergei Yu. Venyaminov, Robert W. Woody, Analysis of Protein Circular Dichroism Spectra Based on the Tertiary Structure Classification,Analytical Biochemistry, 2001, 299: 271~274
    [86]Mnanvalan P, Johnson W C, Nature, 1983, 305: 831~832
    [87]Levitt M, Chothia C, Nature, 1976, 361: 552~558
    [88]M. Dockal, D. C. Carter, F. Ruker, Conformational transitions of the three recombinant domains of human serum albumin depending on pH, Journal of Biological Chemistry, 2000, 275(5): 3042-3050
    [89]X. C. Shen, H. Liang, J. H. Guo, et al., Studies on the interaction between Ag+ and human serum albumin, Journal of Inorganic Biochemistry, 2003, 95(2-3): 124-130
    [90]S. M. Vaiana, A. Emanuele, M. B. Palma-Vittorelli, et al., Irreversible formation of intermediate BSA oligomers requires and induces conformational changes, Proteins-Structure Function and Bioinformatics, 2004, 55(4): 1053-1062
    [91]Y. H. Hong, L. K. Creamer, Changed protein structures of bovine beta-lactoglobulin B and alpha-lactalbumin as a consequence of heat treatment, International Dairy Journal, 2002, 12(4): 345-359
    [92]T. D. Veenstra, K. L. Johnson, A. J. Tomlinson, et al., Correlation of fluorescence and circular dichroism spectroscopy with electrospray ionization mass spectrometry in the determination of tertiary conformational changes in calcium-binding proteins, Rapid Communications in Mass Spectrometry, 1998, 12(10): 613-619
    [93]沈灿星,袁琦,梁宏等,血清白蛋白与银纳米粒子相互作用的滞后效应,中国科学,B辑, 2003, 32: 176-184
    [94]S.N. Loh, M.S. Kay, R.L. Baldwin, Structure and stability of a second molten globule intermediate in the apomyoglobin folding pathway, Proceedings of the National Academy of Sciences, 1995, 92: 5446-5450
    [95]S.E. Radford, C.M. Dobson, P.A. Evans, The folding of hen lysozyme involves partially structured intermediates and multiple pathways, Nature, 1992, 358: 302-307
    [96]F. Chiti, N. Taddei, P. Webster, et al., Acceleration of the folding of acylphosphatase by stabilization of local secondary structure, Nature, 1999, 6: 380-387
    [97]卓肇文,使酶蛋白增加稳定性的途径,生物科学动态, 1988, 4: 22~26
    [98]郭宜估,王喜忠,喷雾干燥,北京:化学工业出版社, 1983.
    [99]K Master.s,喷雾干燥手册,北京:中国建筑工业出版社, 1983.
    [100]王宝和,王喜忠,喷雾干燥技术的历史回顾,干燥技术与装备, 1994, 5: 20
    [101]李桢,喷雾干燥的设计计算,化学世界, 1962, 6: 280
    [102]李桢,喷雾干燥过程中相互关系的理论推导,化学世界, 1964, 11: 46
    [103]黄立新,王宗濂,唐金鑫,我国喷雾干燥技术研究及进展,南京林业大学学报, 1994, 21add: 10
    [104]Katarzyna Samborska, Dorota W-RAndre, Goncalves, Spray-Drying ofα-Amylase-The Effect of Process Variables on the Enzyme Inactivation, Drying Technology, 2005, 23: 941~953
    [105]刘广文,喷雾干燥实用技术大全,北京:中国轻工业学院, 2001.
    [106]王喜忠,喷雾干燥,北京:化学工业出版社, 2003. 8, 120, 162~165, 365,368
    [107]虞子云,气流喷嘴雾化性能研究,北京:中国林业科学研究院, 1989.
    [108]杨庆贤,气流式喷雾干燥器的设计计算,浙江:化学工程研究院, 1975.
    [109]高中良,电动高速离心喷雾头的研究与应用,干燥技术与装备, 1994, 5
    [110]Weuster-Botz D, Experimental design for fermentation media development: statistical design or global random search, J. Biosci.Bioeng, 2000, 90: 473~483
    [111]Myers WR, Response surface methodology, in Encycloedia of biopharmaceutical statistics. 2003, Marcel Dekker: New York. p. 858~869.
    [112]R. L. Plackett, J. P. Burman, The design of optimum multifactorial experiments, Biometrika, 1946, 33: 305~325
    [113]陈魁,试验设计与分析,北京:清华大学出版社, 1996. 94~180
    [114]朱劼,β-甘露聚糖酶的研究现状,安徽农业科学, 2007, 35(19): 5678~5679
    [115]秦湘红,张群芳,魔芋粉酶解产物与低聚果糖对双歧杆菌的促生长作用比较研究,中国微生态学杂志, 2003, 15(5): 261~263
    [116]张力华,黄代勇,王卫华,甘露低聚糖对小鼠肠道菌群的调节作用,中国中西医结合消化杂志, 2006, 14(6): 380~382
    [117]贾锦瑞,张宏瑞,梁增成,和美酵素在饲料工业中的应用,中国饲料, 1995, 24: 19~21
    [118]Khanongnuch C., Asada K., Tsuruga H., et al.,β-mannanase and xylanase of Bacillus subtilis 5H active for bleaching of crude pulp, Journal of Fermentation and Bioengineering, 1998, 86(5): 461~466
    [119]Palackal N., Lyon C.S., Zaidi S., et al., A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut, Applied Microbiology and Biotechnology, 2007, 74(1): 113~124
    [120]王丽伟,卢拥军,单文文,瓜尔胶低分子量化降解条件研究,油田化学, 2006, 23(1): 32~35
    [121]周响艳,谭会泽,冯定远,β-甘露聚糖酶在饲料中的应用研究,养殖与饲料, 2006, 4: 21~24
    [122]Anna Millqvist-Fureby, Martin Malmsten, Bjorn Bergenstahl, Spray-drying of trypsin-surface characterisation and activity preservation, International Journal of Pharmaceutics, 1999, 188: 243~253

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700