用户名: 密码: 验证码:
粘红酵母利用纤维素水解液发酵制备微生物油脂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源与环境问题是当今世界各国所面临的两大难题。伴随着日趋严重的全球性能源短缺与环境恶化,从环境保护与资源开发的角度出发,积极开发替代化石燃料的可再生新能源是一种必然趋势,如生物柴油就是一种具有很大发展潜力的可再生清洁能源。目前,生物柴油原料油脂的主要来源是动植物脂肪以及餐饮废油,存在成本高以及收集和运输困难的问题,因此寻找一种廉价的原料成为了生物柴油产业化的关键。某些微生物能将五糖和六糖转化为油脂,这一特性适用于对木质纤维素水解糖化液的利用。因此微生物油脂可为生物柴油的制备提供更加廉价而广泛的原料。
     本文首先考察了粘红酵母As2.107在摇床及1L发酵罐上的发酵特性。结果表明:葡萄糖浓度在100g/L以下范围内不会对菌体造成抑制。有机源时生物量高于以无机源,但其油脂产量低于后者。以KNO3为源能够显著促进细胞的生长和油脂的积累。最佳的钾离子浓度为4g/L。在1L发酵罐上粘红酵母细胞生物量可达17.7g/L,油脂产量可达6.4g/L,最优化的培养条件为pH为6,温度为30℃,装液量为700mL,通气量为1vvm,转速为550 rpm。
     研究了补料培养对粘红酵母细胞生长及油脂积累的影响,补糖有利于油脂产量的提高。最佳的补料方式为:发酵48小时一次补加14g/L的葡萄糖。采用该补料策略,细胞生物量可达16.8g/L,油脂产量可达9.1g/L。
     研究了粘红酵母以工业木糖及混合糖为源发酵生产微生物油脂特性。结果表明,高的初始木糖浓度对粘红酵母细胞生长有一定的抑制作用,确定初始木糖浓度为35g/L,硝酸钾和酵母粉作为混合源,酵母粉浓度为4g/L,碳氮比为55,接种量为15%。H2PO4-的浓度为6g/L。
     当以混合糖为源,酵母粉最佳浓度为4g/L,碳氮比为55,接种量为10%,萄糖抑制粘红酵母对木糖的代谢,最佳的木糖和葡萄糖比例为2.5:1。当木糖和葡萄糖的比例按照2.5:1,补料时间为发酵72~84小时,补料浓度为15~25g/L时,细胞生物量、油脂产量和油脂含量可分别达到19.5g/L、11.6g/L和59.5%。
     本文还考察了木质纤维素水解液中糠醛和乙酸对菌体生长的影响。当糠醛和乙酸浓度大于2g/L时菌体完全不生长,糠醛和乙酸浓度为1g/L以下,随着糠醛浓度的降低,菌体生物量呈上升趋势,此时,糠醛对菌体生长的抑制作用大于乙酸。采用减压蒸馏脱出糠醛,并以浓缩的蔗渣和玉米芯水解液为源发酵制备微生物油脂,其生物量分别达到15.1g/L和13.7g/L,油脂含量分别达到32.5%和29.2%。因此,当甘蔗渣和玉米芯等纤维素原料水解并脱除糠醛和乙酸后,可以作为粘红酵母As2.107发酵制备油脂的原料。
     将微生物油脂作为原料,采用超临界反应制备生物柴油,对产物成分进行气相色谱分析表明微生物油脂可作为制备生物柴油的原料。
At present, the world are facing with the serious energy and enviromental problem .With the problem of global energy shortage and environmental deterioration become more and more seriously, people are exploring the renewable energy to substitute the fossil fuel. Biodesel is such a kind of clean and renewable energy with great development potential. The raw materials of biodiesel are vegetable oil and waste oil at present . However, the high material price of vegetable oil and waste oil led to the high production cost of biodiesel production. So develop cheep materials are very important for the biodiesel industrialization. Some studies find that many microbe have a great deal of lipid in the body and can co-fermentate glucose and xylose simultaneously, so production of lipid material by microbial fermentation using hemicellulosic hydrolysate can provide a wide range and cheap raw materials for biodiesel.
     First of all ,the batch and feed-batch fermentation in shaker and fermentor by fermentation of glucose with rhodotorula gutini As2.107 was investigated respectively.The experimental results showed that: the yeast growth will not be inhibited by glucose when the sugar concentration under 100 g/L, and the optimum initial glucose concentration is about 50g/L, the biomass of using organic nitrogen is higer than inorganic nitrogen but the lipid content of later is higher than the former, because of offering a higher kalium and lower natrium for the cell, using potassium nitrate under 4g/L as nitrogen source will promote lipids accumulation, the biomass and lipid can reach 17.7g/L and 6.4g/L while growing in 1L fermentor in which the optium operation is that ventilation was 1vvm , pH is 6 and stirrer speed was 550 rpm.
     The feed-batch fermentation in shaker by fermentation of glucose with rhodotorula gutini As2.107 was investigated. The biomass and lipid can reach 16.8g/L and 9.1g/L while adding glucose(14 g/L) in the medium at 48h during fermentation.
     The batch fermentation in shaker by fermentation of xylose with rhodotorula gutini As2.107 was investigated. The effects of fermentation operation parameters on fermentation process and lipid synthesize were discussed. The results showed that: the yeast growth will be inhibited by the high concentration of xylose, both of the biomass and content of lipid were maximum when xylose concentration is about 35g/L, KNO3 and yeast were used as nitrogen source, the yeast concentration is about 4g/L ,the ratio of carbon and nitrogen was 55, inoculation amount was 15% and the concentration of KH2PO4 is 6g/L.
     The batch fermentation in shaker by cofermentation of glucose and xylose with rhodotorula gutini As2.107 was investigated. The results showed that: both of the biomass and content of lipid were maximum when the ratio of xylose and glucose is 2.5, the total concentration of sugar is about 50g/L, KNO3 and yeast were used as a nitrogen source, the yeast concentration is about 4g/L ,the ratio of carbon and nitrogen was 55, When grown on mixed sugar containing glucose (15g/L) and xylose (35g/L) under feed-batch fermentation which adding 15~25g/L sugar (ratio of xylose and glucose is 2.5) 72~84h after beginning fermentation, biomass and lipid content were19.5 g/L and 59.5% respectively.
     The influence of furfural and acetic acid on Rhodotorula glutin As2.107 growth was investigated. The yeast will stop growth when their concentrations exceeded 2 g/L. When grown on bagasse and corncob, biomass were15.1g/L and 13.7g/L,lipid content were 32.5% and 29.2%. So the hemicellulosic hydrolysate can be used as raw material to produce microbial lipid when removal of toxin from it. The lipid produced by fermentation which using lignocellulosic hydrolysate as raw material is also can be used to prepare of biodiesel.
引文
[1] Tyson K S, Bozell J, Wallace R, et al. Biomass oil analysis: research needs and recommendations. NREL /TP - 510 -34796. June 2004.
    [2] Ratledge C,Wynn J.The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms.Adv Appl Microbiol, 2002,51:1-51.
    [3]蒲海燕,贺稚非,刘春芬等.微生物功能性油脂研究概况[J],粮食与油脂,2003(11): 12-14.
    [4]李小松,余扬帆,微生物油脂.食品科技,1997(5):8-9.
    [5] Khalfow n,B.G. Thibawt, M.Lacord. Docosaheuaenore and ereosapentaenorc acid inhabit human lymphop roliterative responses in vitro but not the expression of T cell surface activation markers.Scandinavian Journal of Immunology, 1996,43(30):248-256.
    [6] Kinoshita, Kazuo,Masakuni Noguchi.Effects of linoleic acid,eicosape ntaenoic acid, and docosahexaenoic acid on the growth and inetattasis of M M as mam mary tumor-transplants in mice. International journal of Oncology, 1996,8(3):375-381.
    [7] Serh ryenko.Eicosapehtaehoic and docosahexaenoic acids experimental and clinical aspects. Likars'ka Sprava,1995(56):61-66.
    [8] Das,U.N.Essential fatty acid metabolism in patients with essential hytertention,drabetes mellitus and coronary heart disease. Prostagoandius Leukotienes and Essential Fatty acids,1995,52(6):387-391.
    [9]王萍.微生物油脂生产和应用.粮食与油脂,1999,12(3): 49-51.
    [10]黄建忠,施巧琴,周晓兰,等.深黄被孢霉高产脂变异株的选育及其发酵的研究.微生物学通报,1998,25(4):187-191.
    [11] Shimizu S. Production of odd chain polyunsaturated fatty acids by Mortierella fungi. JAOCS,1991,68:254-258.
    [12]郑建仙,耿立萍.功能性食品基料-γ亚麻酸.食品与发酵工业,1996,1:49-54.
    [13] Stredanska, S.Sajbidor.J. Oligounsaturated fatty acid production by selected strains of inicromycetes.Folia Microbiology ,1992,51(5):357-359.
    [14] Radavan, Samirs. ,Mayadam. Distribution of arachidonie acid among lipid classes during culture ageing of five Iggomycete species. Mycological Research,1996,100 (1):113-116.
    [15] Yazawa, Kazunaga. Production of eicosapentaenoic acid from marine bacteria L- ipids, 1996,31(suppl):S294-S300.
    [16]罗玉萍,杨荣英,李思光等.产棕榈油酸酵母菌的分离和鉴定.微生物学报,1995,35 (6):400-403.
    [17]薛照辉,吴谋成.微生物油脂进展.山西食品工业,2002,(2):10-11.
    [18]缪晓玲,藻类可再生能源的利用及藻细胞抗环境胁迫的研究[D],北京:清华大学,2004.
    [19]曲威,刘波,吕建州,等.高产油脂斯达氏酵母菌株的选育及摇瓶发酵条件的初步研究.辽宁师范大学学报(自然科学版),2006,29(1):88-92.
    [20]李永红,刘波,赵宗保,等.圆红冬孢酵母菌发酵产油脂培养基及发酵条件的优化研究.生物工程学报,2006,22(4):650-655.
    [21]王莉,孙玉梅,刘英新,等.发酵性丝孢酵母( Trichosporon fermentans)发酵产油脂的研究.工业微生物,2007,37(1):39-42.
    [22]孔祥莉,刘波,赵宗保,等.斯达氏油脂酵母利用混合糖发酵产油脂.生物加工过程,2007,5(2):36-41.
    [23]墨玉欣,刘宏娟,张建安,等.微生物发酵制备生物柴油油脂原料工艺条件的研究.现代化工增刊,2006,26(2):279-282.
    [24]里伟,杜伟,李永红,等.生物酶法转化酵母油脂合成生物柴油.过程工程学报,2007,2(7):137-140.
    [25] Fall R,Phelps P,Spindler D.Bioconversion of xylan to triglycerides by oil-rich yeasts.Appl Environ Microbiol,1984,47:1130-1134.
    [26]李永红,刘波,孙艳,等.广谱源产油酵母菌的筛选.中国生物工程杂志,2005,25(12): 39-44.
    [27]薛飞燕,张栩,谭天伟,等.微生物油脂的研究进展及展望.生物加工过程, 2005, 3(1): 23-27.
    [28]施安辉,谷劲松.高产油脂酵母菌株的选育、发酵条件的优化及油脂成分分析.中国酿造, 1997(4): 10-11.
    [29]刘波,孙艳,刘永红,等.产油微生物油脂生物合成与代谢调控.微生物学报,2005,45(1):153-156.
    [30] Sorger D , Daum G. Triacylglycerol biosynthesis in yeast . ApplMicrobiol Biotechnol , 2003 , 61 : 289– 2991.
    [31] Zheng Z , Zou J . The initial step of the glycerolipid pathway : identification of glycerol 3-phosphate/dihydroxyacetone phosphatedual substrate acyltransferases in Saccharomyces cerevisiae. J Biol Chem ,2001 , 276 : 1710– 1716.
    [32] Oelkers P , CromLey D , Padamsee M, et al . The DAG1 genedetermines a second triglyceride synthetic pathway in yeast . J BiolChem , 2002 , 277 : 8877– 8881.
    [33] Dahlqvist A , Stahl U , Lanman M, et al . Phospholipid :diacylglycerol acyl-transferase : an enzyme that catalyzes the acylCoA-independent formation of triacylglycerol in yeast and plants.Proc Natl Acad Sci USA , 2000 , 12 : 6487 - 64921
    [34] Sandager L , Gustavsson M, Stahl U , et al . Storage lipid synthesis is non-essential in yeast . J Biol Chem , 2002 , 277 : 6478– 6482.
    [35] Sorger D , Daum G. Synthesis of triacylglycerols by the acyl coenzyme A: diacyl-glycerol acyltransferase Dga1p in lipid particlesof the yeast Saccharomyces cerevisia. J Bacteriol , 2002 , 184 : 519- 524.
    [36] Gangar A , Karande A A , Rajasekharan R. Isolation and localizationof a cytosolic 10 S triacylglycerol biosynthetic multienzyme complex from oleaginous yeast . J Biol Chem , 2001 , 276 : 10290– 10298.
    [37] Raychaudhuri S , Reddy M, Rajkumar N R , et al . Cytosolic iron superoxide dismutase is a part of the triacylglycerol biosynthetic complex in oleaginous yeast . Biochem J , 2003 , 372 : 587– 594.
    [38] Gangar A , Raychaudhuri S , Rajasekharan R. Alteration in the cytosolic triacylglycerol biosynthetic machinery leads to decreased cell growth and triacylglycerol synthesis in oleaginous yeast . Biochem J , 2002 , 365 : 577– 589.
    [39] Evans C T , Scragg A H , Ratledge C. Regulation of citrate efflux from mitochondria of oleaginous and non-oleaginous yeasts by adenine nucleotides. Eur J Biochem , 1983 ,132 : 609– 615.
    [40] Botham P A , Ratledge C. A biochemical explanation for lipid accumulation in Candida 107 and other oleaginous microorganisms. J Gen Microbiol , 1979 , 114 : 361– 375.
    [41] Palmieri L , Palmieri F , Runswick M J , et al . Identification by bacterial expression and functional reconstitution of the yeast genomic sequence encoding the mitochondrial dicarboxylate carrier protein. FEBS Lett , 1996 , 399 : 299– 302.
    [42] Wynn J P , Hamid A A , Li Y, et al . Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology , 2001 ,147 : 2857– 2864.
    [43] Papanikolaou S , Sarantou S , Komaitis M, et al . Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple limited media. J Appl Microbiol ,2004 , 97 : 867– 875.
    [44] Adams I P , Dack S , Dickinson F M, et al . The distinctiveness of ATP :citrate lyase from Aspergillus nidulans . Biochim Biophys Acta , 2002 , 1597 : 36– 411.
    [45] Ratledge C. Regulation of lipid accumulation in oleaginous microorganisms. Biochem Soc Trans , 2002 , 30 : 1047– 1050.
    [46] Linn T C , Srere P A. Binding of ATP citrate lyase to the microsomal fraction of rat liver. J BiolChem , 1984 , 259 : 13379– 13384.
    [47] Song Y, Wynn J , Li Y, et al . A pre-genetic study of the isoforms of malic enzyme associated with lipid accumulation in Mucorcircinelloides . Microbiology , 2001 , 147 : 1507– 1515.
    [48] dos Santos MM, Raghevendran V , Kotter P , et al . Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. Metab Eng , 2004 , 6 : 352– 363.
    [49]蒲海燕,贺稚非,刘春芬,等.微生物功能性油脂研究概况[J].粮食与油脂,2003(11): 12-14.
    [50]袁振宏,吴创之,马隆龙,等.生物质能利用原理与技术[M].北京:化学工业出版社,2005.
    [51]刘兆普,邓力群,刘玲,等.莱州海涂海水灌溉下菊芋生理生态特性研究[J].植物生态学报,2005,29(3):474-478.
    [52]刘亮,朱明,朱太平.芒荻类植物资源的开发和利用[J].自然资源学报,2001,16(6):562 -563.
    [53]刘吉华,袁生,戴传超.影响真菌发酵过程中多不饱和脂肪酸积累的条件[J].微生物学杂志,1997,17(4):52-55,20.
    [54]吴克刚,杨连生.利用海生真菌发酵生产DHA的研究概况[J].海洋科学, 2000,24(7):19-21.
    [55]徐华顺,罗玉萍,李思光,等.微生物发酵产油脂的研究进展[J].中国油脂,1999 ,24(2):34-37.
    [56] Mainul Hassan,Philippe JB,Louis-Marie Granger,et al.Influence of nitrogen and iron limitation on lipid production by crytococcus curvatus grown in batch and fed-batch culture.Process Biochemistry,1996,31(4):355-361.
    [57]李魁等.利用食品工业废弃物生产真菌油脂.食品工业科技,1997 (6):65-69.
    [58] P Manirakiza,A Covaci,P Schepens.Comparative Study on Total Lipid Determination using Soxhlet, Rcese-Gottlieb, Bligh&Dyer, and Modified Bligh&Dyer Extraction Methods. Journal of Food Composition and Analysis,2001,14:93-100.
    [59]李植峰,张玲,沈晓京,等.四种真菌油脂提取方法的比较.微生物学通报,2001,28(6):72- 75.
    [60]张玲,李植峰,谭亚芳,等.一种简便、快速的真菌油脂提取方法.生物技术,1999,9(6):43- 44.
    [61]何东平,陈涛,胡小泓,等.微生物油脂精炼的研究.中国油脂,2000,25(6):76-79.
    [62]张继泉,王瑞明,孙玉英.利用木质纤维素生产燃料酒精的研究进展.酿酒科技,2003,(115).
    [63]Mosier N,Wyman C,Dale B,et al.Features of promising technologies for pretreatment of lignocellulosic biomass.Bioresource Technology,2005,96:673-686.
    [64]马晓建等,以纤维素类物质为原料发酵生产燃料乙醇的研究进展,食品与发酵工业,2004,11:77-81.
    [65]朱跃钊,卢定强,木质纤维素预处理技术研究进展.生物加工过程,2004,2(4),11-16.
    [66]刘远洋,申德超,关于纤维素原料生产燃料乙醇预处理工艺的一些探讨.酿酒,2005,32(3),41-42.
    [67]Tanahash I M,Takada T,Aokit,et al.Chemical changes of wood components by stream explosion.Wood Research,1988,(75):l-12.
    [68]Iranmahroob,Nadim F,Monemis,et al.Optimizing acid-hydrolysis a critical step for production of ethanol from mixed wood chips.Biomass and Bioenergy2002,(22):401-404.
    [69]Garotte G,Dominouez H,Parajo J C,et al.Generation of xylose solutions from Eucalyptus globules wood by autohydrolysis posthydrolysis processes posthydrolysis kinetics. Bioresource Technology,2001,(79):155-164.
    [70]Hamelinck C N,Hooijdonk G,Faai J P.Ethanol from lignocellulosic biomass techno-economic performance in short,middle-and long-term.Biomass and Bioenergy,2005,(28):384-410.
    [71]Stenberc K,Galbe M,Zacch I G.The influence of lactic acid formation on the simultaneous saccharification and fementation(SSF)of softwood to ethanol.Enzyme and Microbial Technology,2000,26:71-79.
    [72]Kim D W,Kim T S.Fractionation of herbaceous biomass by ammonia-hydrogen peroxide percolation treatment.Journal of Ferment Bioengineering,1992,73:461-466.
    [73]戴四发等,纤维素酶研究现状及其在畜牧业中的应用.安徽技术师范学院学报,2001,15(3),32-38.
    [74]Ikura,Michio,Henry, et al.Pyrolysis liquid in diesel oil microcmulsions[P].US: 5820640, 1998.
    [75]Wenzel,Deborah. Composition as an additive to create clear stable solutions and microcmulsions with a combustible liquid fuel to improve combustion[P].US:6348074,2002.
    [76]Goering,C.E,et al.In vegetable oil fuels,proceedings of the international conference on plant and vegetable oils as fuels.Fargo,North Dakota.American Society of Agricultural Engineers,St Joseph,1982b,MI4,279-286.
    [77]Schwab A W,Bagby M 0,Freedman B. Fue1,1987,66(10):1372-1378.
    [78]朱建良,张冠杰.国内外生物柴油研究生产现状及发展趋势.化工时刊,2004,18(1):23-27.
    [79]Gerpen J V.Biodiesel processing and production.Fuel Processing Technology,2005,86(10):1097-1107.
    [80]李为民,郑晓林,徐春明,等.固体碱法制备生物柴油及其性能.化工学报,2005,56(4):711-716.
    [81]姚亚光,纪威,符太军,等.基于酸催化的餐饮业废弃油脂与醇类酯化反应实验研究.中国农业大学学报,2006,11(3):113-116.
    [82]祖若夫,胡宝龙,周德庆.微生物学实验教程.复旦大学出版社.
    [83]刘淑君,施安辉.高产油脂酵母选育及摇瓶发酵条件的研究.
    [84]Thakur M S,Prapulla S G,Karanth N G.Estimation of ntracellular lipids by the measurement of absorbance of yeast cells stained with sudan black b.Enzyme Microb Technol,1989,11:252-254.
    [85]咸漠,康亦兼,刘延,等.菌油脂肪酸碱法甲酯化的研究.吉林大学自然科学学报,2001,1:103-105.
    [86]杨革,王玉萍,李翔太,等.多价不饱和脂肪酸发酵条件的初步研究.食品与发酵工业,1997,23(2):8-13.
    [87]方祥年,黄炜,夏黎明.半纤维素水解液中抑制物对发酵生产木糖醇的影响.浙江大学学报,2008,39(4):547-551.
    [88]余世袁,罗廉,李杰,等.修哈塔假丝酵母对半纤维素戊糖和己糖的同步发酵.林产化学与工业,1991,1(11):17-24.
    [89] Sliningrt P. J. and Bothast R.J, Biotechnol.Bioeng,1988, 32, 956-971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700