用户名: 密码: 验证码:
Mg-Ni-Zn-Y非晶合金复合材料的组织与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Mg基非晶合金复合材料具有比强度高、塑性好等优点,在微成形部件等方面具有应用前景,因此成为非晶合金领域的研究热点。本文通过铜模铸造法制备了Mg-Ni(Cu)-Zn-Y非晶合金及其复合材料,采用扫描电镜(SEM)、X-射线衍射仪(XRD)分析合金的组织、断口形貌和相组成,利用电子万能试验机测试合金的力学性能,主要实验结果如下:
     对比研究了直径为3mm的Mg_(77)Cu_(12)Zn_5Y_6和Mg_(77)Ni_(12)Zn_5Y_6两种合金,这两种合金的断裂强度和塑性应变量分别为532MPa、2.4%和667MPa、7%。非晶基体上晶态相组成不同是这两种合金力学性能差别的主要原因。通过对应力-应变曲线的分析,给出了非晶合金复合材料的塑性变形机制。
     研究了Mg和Ni的变化对Mg_(77+x)Ni_(12-x)Zn_5Y_6(x=4,6,8)合金组织结构和力学性能的影响。随着Ni含量的减少,Mg2Ni相逐渐减少,析出的Mg_(12)YZn相增多,针状Mg相的数量和尺寸减少。当Ni的含量为8%时,合金的压缩塑性有了突破性进展达到了21%,但因非晶含量不高,所以强度仅为550MPa。在Ni为6at%和4at%时合金的断裂强度分别为640MPa和600MPa,塑性变形量分别为15.8%和17%。
     研究了Mg和Y的变化对Mg_(73+x)Ni_(12)Zn_5Y_(10-x)(x=0,2,6,8)合金组织结构和力学性能的影响。随着Y含量的减少,非晶基体上晶态相的形貌由x=0时的花瓣状发展为x=6时的针叶状和x=8时的粗大枝晶状。其中x=2合金的非晶基体上仅有少量的花瓣与针叶的混合组织。其中Mg_(73)Ni_(12)Zn_5Y_(10)合金具有最佳的压缩断裂强度和塑性,分别为692MPa和4%。当将Ni降低到8at%时,设计了Mg_(87-x)Ni_8Zn_5Y_x(x=2,4,8)非晶合金复合材料,调整Mg和Y的含量,没有改善合金的力学性能。样品的制备尺寸提高,降低了Mg_(75)Ni_(12)Zn_5Y_8和Mg_(77)Ni_(12)Zn_3Y_8合金的力学性能。
The high specific strength and good plasticity for Mg-based amorphous matrix composites (AMC) make them have many potential applications in such as micro electro mechanical system. Therefore the search for Mg-based AMC with higher plastic deformation has become a highlight in the development of bulk metallic glasses. In this paper, Mg-Ni(Cu)-Zn-Y amorphous matrix composites were prepared by copper mould casting. The microstructure, the fracture surfaces and the phase constituent of those alloys were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanical properties of the AMC were tested by universal electronic material testing machine. The results are given as following:
     Comparative investigations were made for Mg_(77)Cu_(12)Zn_5Y_6 and Mg_(77)Ni_(12)Zn_5Y_6 as-cast alloys with 3mm in diameter. The fracture strength and plastic strain are 532MPa and 2.4% for the former and 667MPa, 7% for the latter. The different crystalline phases in the amorphous matrix result in the different mechanical properties for the two alloys. Furthermore, the plastic deformation mechanism is suggested by analyzing the stress-strain curves.
     The microstructure and mechanical properties for Mg_(77+x)Ni_(12-x)Zn_5Y_6(x=4, 6, 8) alloys were investigated by considering both Mg and Ni variation. The homogenous distribution of needle-like Mg phase was only observed for x=4 alloy and it decreased with the decrease of Ni element. At the same time, the intermetallic Mg_2Ni was increased and Mg_(12)YZn phase was increased. It is interesting to find that the plastic strain for the alloy with x=4 is as high as 21%, which is the largest plastic strain found up to now. The fracture strengths and plastic strains are 640MPa and 15.8% for x=6 alloys, respectively, 600MPa and 17% for x=8 alloys, respectively.
     The microstructure and mechanical properties for Mg_(73+x)Ni_(12)Zn_5Y_(10-x)(x=0, 2, 6, 8) alloys were investigated by decreasing Y and increasing Mg content. The microstructure evolution from flower-like for x=0 to needle-like for x=6 and then to thick dendritic for x=8 alloys respectively. While a combination microstructure containing both flower and needle Mg solid solution was observed for x=2 alloy, which presents the best mechanical properties among the alloys mentioned above. The fracture strength and plastic strain for it are 692MPa and 4% respectively. When we further decreased Ni content and re-designed Mg_(87-x)Ni_8Zn_5Y_x(x=2, 4, 8) alloys, however, the mechanical properties of the new alloys were not improved. The effect of cooling rate on the mechanical properties was also investigated. The fracture strength and plastic strain were becoming worse when as-cast sample size was increased for both Mg_(75)Ni_(12)Zn_5Y_8 and Mg_(77)Ni_(12)Zn_3Y_8 alloys.
引文
[1] 柯成,唐与谌,罗阳等译.非晶态金属合金.北京:冶金工业出版社,1989,3-5.
    [2] Cohen M H, Tumbull D. Molecular transport in liquids and glasses. Journal of Chemical Physics,1959,31: 1164-1169.
    [3] Cohen M H, Grest G S. Liquid-glass transition a free volume-volume approach. Physical Review B, 1979,20: 1077-1098.
    [4] Gilman J J. Flow via dislocations in ideal glasses. Journal of Applied Physics, 1973,44: 679.
    [5] 陈伟荣,王吉军,董闯.大块非晶态合金.大连大学学报,2000,21(6):8-11,17.
    [6] Chen H S, Miller C E. A rapid quenching technique for the preparation of thin uniform films of amorphous solids. Review of Scientific Instruments, 1970,41(8): 1237-1278.
    [7] Chen H S. Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metallurgica, 1974,22(12): 1505-1511.
    [8] Inoue A, Kohinata M, An-Pang T, et al. Mg-Ni-La amorphous alloys with a wide supercooled liquid region. Materials Transactions JIM, 1989,30(5): 378-381.
    [9] Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloy with a wide supercooled liquid region. Materials Transactions JIM, 1989,30(12): 965-972.
    [10] Inoue A, Zhang T, Nishiyama N, et al. Preparation of 16mm diameter rod of amorphous Zr_(65)Al_(7.5)Ni_(10)Cu_(17.5) alloy. Materials Transactions JIM, 1993, 34(12): 1234-1237.
    [11] Inoue A, Zhang T, Itoi T, et al. New Fe-Co-Ni-Zr-B amorphous alloys with wide supercooled liquid regions and good soft magnetic properties. Materials Transactions JIM, 1997, 38(4):359-362.
    [12] Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloy with high glass transition temperature significant supercooled liquid region. Materials Transactions JIM, 1990, 31(3):177-183.
    [13] Amiya K, Nishiyama N, Inoue A, et al. Mechanical strength and thermal stability of Ti-based amorphous alloy with large glass-forming ability. Materials Science and Engineering A, 1994,179-180: 692-696.
    [14] Lin X H, Johnson W L. Formation of Ti-Zr-Cu-Ni bulk metallic glasses. Journal of Applied Physics, 1995, 78(11): 6514-6519.
    [15] Peker A, Johnson W L. A highly processable metallic glass Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10.0)Be_(22.5).Applied Physics Letters, 1993,63(17): 2342-2344.
    [16] Zhang T, Inoue A, Masumoto T. Amorphous Zr-Al-TM(TM=Co, Ni, Cu) alloys with significant supercooled liquid region of overlook. Materials Transactions JIM, 1991, 32(11): 1005-1010.
    [17] Zhao D Q,Zhang Y, Pan M X, et al. Glass forming properties of Zr-based bulk metallic alloys. Journal of Non-Crystalline Solids, 2003,315(1-2): 206-210.
    [18] Hays C C, Kim C P, Johnson W L. Improved mechanical behavior of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Materials Science and Engineering A, 2001,304-306: 650-655.
    [19] Qiu K Q, Wang A M, Zhang H F et al. Mechanical properties of tungsten fiber reinforced ZrAlNiCuSi metallic glass matrix composite. Intermetallics, 2002,10:1283-1288.
    [20] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia, 2000,48(1): 279-306.
    [21] Inoue A, Zhang T, Takeuchi A. Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe-TM-B(TM=IV-VID group transition metal) system. Applied Physics Letters, 1997,71(4): 464-466.
    [22] 赵德强,杨元政,李喜峰.大块非晶合金的形成能力及研究进展.金属功能材料,2003,10(3):36-39.
    [23] 嵇罡,季颖斐,马学鸣等.大块非晶合金的形成能力.金属功能材料,1999,17(3):55-34.
    [24] 陶平均,杨元政.大块非晶材料的性能及其应用.轻合金加工技术,2006,34(1):45-47.
    [25] Uhlmann D R, Suratwala T, Davidson K,et al. Sol-gel derived coatings on glass. Journal of Non-Crystalline Solids, 1997,218: 113-122.
    [26] Zhao H S, Zhou W C, Zhao D L, et al. The effect of melting temperature on the properties of PbBr_2-PbCl_2-P_2O_5 glasses. Acta Metallurgica, 1999,12(5):1153-1158.
    [27] Zhang J, Dai S X, Xu S Q, et al. Raman spectrum and thermal stability of a newly developed TeO_2-BaO-BaF_2-La=O_3-LaF_3 glass. Journal of Materials Science and Technology, 2004, 20(5):527-530.
    [28] Donald I W, Davies H A. Prediction of glass-forming ability for metallic systems. Journal of Non-Crystalline Solids, 1978, 30: 77-85.
    [29] Inoue A. Bulk amorphous alloys preparation and fundamental characteristic's. Switzerland: Trans Tech(?)Publications, 1998.
    [30] Li Y. Formation, Structure and properties of bulk metallic glasses. Journal of Materials Science and Technology, 1999,15(2): 97-109.
    [31] 陈文智.块体非晶材料的研究进展.金属功能材料,1997,4(1):1-6.
    [32] 郑准备,梁工英.块体非晶合金的研究进展.热加工工艺,2001,5:4042.
    [33] 司鹏程,饶雄,李细江等.块体非晶合金形成的控制因素与制备技术.材料工程,1998,11:3-7.
    [34] 周飞,卢柯.非晶态合金条带高压复合法制备块体非晶态合金.材料研究学报,1997,11(2):127-130.
    [35] 田学雷,赵生旭,陈熙琛.Zr-Ti-Ni-Cu-Be块体非晶合金的制备工艺.山东工业大学学报,1999,29(4):301-304.
    [36] Calka A, Madhava M, Polk D E, et al. A transition-metal-free amorphous alloy: magnesium-zinc (Mg_(0.70)Zn_(0.30)). Scripta Metallurgica, 1970,11:65-70.
    [37] Hansen M, Elliott R P, Shunk F A. Constitution of Binary Alloys. New York: McGraw-Hill Book Company, 1958.
    [38] Kempen A T W, Nitsche H, Sommer F et al. Crystallization kinetics of amorphous magnesium-rich magnesium-copper and magnesium-nickel alloys. Materials Transactions JIM,2002,33: 1041-1050.
    [39] Sirkin H, Mingolo N, Nassif E et al. Increase of the glass-forming composition range of Mg-based binary alloys by addition of tin. Journal of Non-Crystalline Solids, 1987,93: 323-330.
    [40] Inoue A, Kato A, Zhang T et al. Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Materials Transactions JIM, 1991, 32: 609-616.
    [41] Busch R, Liu W, Johnson W L. Thermodynamics and kinetics of the Mg_(65)Cu_(25)Y_(10) bulk metallic glass forming liquid. Applied Physics Letters, 1998, 83: 4134-4141.
    [42] Kato A, Inoue A, Horikiri H, et al. Production of bulk amorphous Mg_(85)Y_(10)Cu_(5) alloy by extrusion of atomized amorphous powder. Materials Transactions JIM, 1994, 35:125-129.
    [43] Gebert A, Wolff U, John A, et al. Stability of the bulk glass-forming Mg_(65)Y_(10)Cu_(25) alloy in aqueous electrolytes. Materials Science and Engineering, 2001, A299: 125-135.
    [44] Ohnuma M, Pryds N H, Linderoth S, et al. Bulk amorphous (Mg_(0.98)Al_(0.02))_(60)Cu_(30)Y_(10) alloy.Scripta Metallurgica, 1999,41: 889-893.
    [45] Pryds N H, Eldrup M, Ohnuma M et al. Preparation and properties of Mg-Cu-Y-Al bulk amorphous alloys. Materials Transactions JIM, 2000,41: 1435-1442.
    [46] Liu W, Johnson W L. Precipitation of bcc nanocrystals in bulk Mg-Cu-Y amorphous alloys. Journal of Materials Research, 1996,11: 2388-2392.
    [47] Liu W, Johnson W L, Schneider S, et al. Small-angle X-ray-scattering study of phase separation and crystallization in the bulk amorphous Mg_(62)Cu_(25)Y_(10)Li_3 alloy. Physical Review B, 1999, 59:11755-11759.
    [48] Kang H G, Park E S, Kim W T, et al. Fabrication of bulk Mg-Cu-Ag-Y glassy alloy by squeeze casting. Materials Transactions JIM, 2000,41: 846-849.
    [49] Park E S, Kang H G, Kim W T, et al. The effect of Ag addition on the glass-forming ability of Mg-Cu-Y metallic glass alloys. Journal of Non-Crystalline Solids, 2001,279: 154-160.
    [50] Amiya K, Inoue A. Preparation of bulk glassy Mg_(65)Y_(10)Cu_(15)Ag_5Pd_5 alloy of 12mm in diameter by water quenching. Materials Transactions JIM, 2001,42: 543-545.
    [51] Amiya K, Inoue A. Thermal stability and mechanical properties of Mg-Y-Cu-M (M = Ag, Pd) bulk amorphous alloys. Materials Transactions JIM, 2000,41: 1460-1462.
    [52] Men H, Kim W T, Kim D H. Fabrication and mechanical properties of Mg_(65)Cu_(15)Ag_5Pd_5Gd_(10) bulk metallic glass. Materials Transactions JIM, 2003,44: 2141-2144.
    [53] Men H, Kim D H. Fabrication of ternary Mg-Cu-Gd bulk metallic glass with high glass-forming ability under air atmosphere. Journal of Materials Research, 2003,18: 1502-1504.
    [54] Park E S, Kim D H. Formation of Mg-Cu-Ni-Ag-Zn-Y-Gd bulk glassy alloy by casting into cone-shaped copper mold in air atmosphere. Journal of Materials Research, 2005, 20:1465-1469.
    [55] Ma H, Shi L L, Xu J, et al. Discovering inch-diameter metallic glasses in three-dimensional composition space. Applied Physics Letters, 2005, 87: 181915-1-181915-3.
    [56] Ma H, Zhang Q, Xu J, et al. Doubling the critical size for bulk metallic glass formation in the Mg-Cu-Y ternary system. Material Research, 2005,20: 2252-2255.
    [57] Li Y, Ng S C, Ong C K,et al. New amorphous alloys with high strength and good bend ductility in the Mg-Ni-Nd system. Journal of Materials Processing Technology, 1995,48(1): 489-493.
    [58] Wei Y X, Xi X K, Zhao D Q. Formation of MgNiPr bulk metallic glasses in air. Material Letters, 2005,59: 945-947.
    [59] Liu W Y, Zhang H F, Hu Z Q et al. Formation and mechanical properties of Mg_(65)Cu_(25)Er_(10) and Mg_(65)Cu_(15)Ag_(10)Er_(10) bulk amorphous alloys. Journal of Alloys and Compounds, 2005, 397:202-206.
    [60] Xi X K, Zhao D Q, Pan M X et al. On the criteria of bulk metallic glass formation in MgCu-based alloys. Intermetallics, 2005,13: 638-641.
    [61] 门华,杨明川,徐坚.添加Co对Mg_(65)Cu_(25)Y_(10)合金玻璃形成能力的影响.材料研究学报,2002,386-388:39-46.
    [62] Murty B S, Hono K. Forming of nanocrystalline particle in glassy matrix in melt-spun Mg-Cu-Y based alloy. Material Transactions JIM, 2000,41(11):1535-1544.
    [63] Li Z G, Hui X, Zhang C M et al. Formation of Mg-Cu-Zn-Y bulk metallic glasses with compressive strength over gigapascal. Journal of Alloys and Compounds, 2008, 454(1-2):168-173
    [64] 吴承建.金属材料学.北京:冶金工业出版社,2000.
    [65] 内田博幸,新谷智彦.Estimation of creep deformation behavior in Mg-Al alloy by projection method.轻金属,1995,45(10):572-577.
    [66] 严峰,吴昆,赵敏.SiC_W/MB15复合材料超塑性.材料工程,2000,7(1):34-37.
    [67] Chua B W. Influence of SiC particles on mechanical properties of Mg based composite. Composite Structures, 1999,47(1-4): 595-601.
    [68] Chen Y X. Electron microscopy studies of interfacial reaction in a (SiCw+B_4Cp)/ZK60A hybrid composite. Scripta Materialia, 2000,43(4): 337-340.
    [69] Hui X, Dong W, Chen G L, et al. Formation, microstructure and properties of long-period order structure reinforced Mg-based bulk metallic glass composites. Acta Materialia, 2006, 55:907-920.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700