用户名: 密码: 验证码:
污泥堆肥用于沙荒地造林过程中土壤重金属潜在生态风险评价
详细信息    查看官网全文
摘要
污泥堆肥用于沙荒地造林是解决城市污泥最终处置难题并实现其资源化利用的一条有效途径,但污泥中的重金属是否会在土壤中积累并产生生态风险值得关注。本文将污泥堆肥用于某市沙荒地造林工程,在施肥后的不同时间采集土壤样品,测定了施肥土壤中Zn、Cd、Hg、Pb、As、Cr、Cu、Ni共8种重金属含量随时间的变化规律,并采用Hakanson潜在生态危害指数法对其生态风险进行了评价;同时,采用土壤污染物预测模型对不同施肥年限下土壤中重金属的累积浓度进行了预测。结果表明,施用污泥堆肥后土壤中8种重金属的平均含量由高到低依次为:Zn>Ni>Cr>Cu>Pb>As>Hg>Cd,且所有重金属的平均含量均超过该区域土壤本底值;8种重金属按平均风险指数排序为:Hg>Cd>Pb>As>Cu>Cr>Ni>Zn,施肥地块潜在危害综合指数为84.79~680.84,平均值为274.63;Hg和Cd对于潜在生态风险指数贡献率分别为13.15%~63.27%和21.46%~45.38%。随着污泥堆肥投加量的增加,土壤重金属潜在生态风险呈增加趋势;同时发现,土壤中重金属的综合生态风险指数随施肥后时间延长有所降低。根据土壤污染物预测模型计算得出:当控制污泥堆肥施用配比低于10%时(堆肥污泥质量占总填入泥土质量的10%),连续施肥15年,施肥地块重金属含量均可满足《土壤环境质量标准》(GB15618—1995)三级标准要求。
Previous research reveals that sludge composting for desert land afforestation is a considerably effective solution to urban sludge disposal problem and sludge reutilization. However, it still remains uncertain that whether heavy metals in sludge will accumulate in soil and its potential ecological impact. In this study, compost sludge has been used as fertilizer within an afforestation project of a city. Soil samples from different time after fertilization are collected. With soil samples, the variations of Zn, Cd, Hg, Pb, As, Cr, Cu and Ni content along with time are investigated and their ecological risk are evaluated by Hakanson potential ecological risk index. Meanwhile, underneath the soil contamination forecast model, the accumulation concentrations of heavy metals in the soil at different fertilizing years are predicted. The results show that the descending order of the heavy metal average content in samples is Zn, Ni, Cr, Cu, Pb, As, Hg, Cd, in which all heavy metals had higher contents than their background values in soil. In terms of the average risk index, the descending order is Hg, Cd, Pb, As, Cu, Cr, Ni and Zn. Additionally, the potential hazards comprehensive index of the fertilized area is 84.79 ~ 680.84, where 274.63 is average. The contribution rates of Hg and Cd to potential ecological risk index were 13.15%~63.27% and 21.46%~45.38%, respectively. The potential ecological risk of heavy metals in soil is observed to be positively correlated with the amount of sludge compost. On the other hand, the integrated ecological risk index of heavy metals in soil decreased with time. According to the results of prediction model of soil contamination, in the soil fertilized by compost sludge under a ratio of 10%(compost sludge to total filled soil in weight) for 15 years, all the heavy metal contents will not exceed the restrict of level Ⅲ of Environmental quality standard for soils(GB15618—1995).
引文
[1]Zorpas A A,Loizidou M.Sawdust and natural zeolite as a bulking agent for improving quality of a composting product from anaerobically stabilized sewage sludge[J].Bioresource Technology,2008,99(16):7545-52.
    [2]Benbrahim M,Denaix L,Thomas A L,et al.Metal concentrations in edible mushrooms following municipal sludge application on forest land[J].Environmental Pollution,2006,144(3):847-854.
    [3]Song U,Lee E J.Environmental and economical assessment of sewage sludge compost application on soil and plants in a landfill[J].Resources Conservation&Recycling,2010,54(12):1109-1116.
    [4]余杰,郑国砥,高定,et al.城市污泥土地利用的国际发展趋势与展望[J].中国给水排水,2012,28(20):28-30.
    [5]王新,周启星.污泥堆肥土地利用对树木生长和土壤环境的影响[J].农业环境科学学报,2005,24(1):174-177.
    [6]尹守东,王风友,李玉文.城市污泥堆肥林地应用研究进展[J].东北林业大学学报,2004,32(5):58-60.
    [7]Reynders H,Bervoets L,Gelders M,et al.Accumulation and effects of metals in caged carp and resident roach along a metal pollution gradient[J].Science of the Total Environment,2008,391(1):82-95.
    [8]Chopin E,Alloway B J.Trace element partitioning and soil particle characterisation around mining and smelting areas at Tharsis,Ríotinto and Huelva,SW Spain[J].Science of the Total Environment,2007,373(2-3):488-500.
    [9]Na Z,Liu J,Wang Q,et al.Mercury contamination due to zinc smelting and chlor-alkali production in NE China[J].Applied Geochemistry,2011,26(2):188-193.
    [10]Olawoyin R,Oyewole S A,Grayson R L.Potential risk effect from elevated levels of soil heavy metals on human health in the Niger delta[J].Ecotoxicology&Environmental Safety,2012,85(3):120-130.
    [11]胡忻,陈茂林,吴云海,et al.城市污水处理厂污泥化学组分与重金属元素形态分布研究[J].农业环境科学学报,2005,24(2):387-391.
    [12]涂剑成,赵庆良,杨倩倩.东北地区城市污水处理厂污泥中重金属的形态分布及其潜在生态风险评价[J].环境科学学报,2012,32(3):689-695.
    [13]刘敬勇,孙水裕,许燕滨,et al.广州城市污泥中重金属的特性及潜在生态风险[C].中国矿物岩石地球化学学会学术年会,2009.
    [14]张蓉,谢贻兵,花日茂,et al.合肥及周边城市污水污泥重金属含量和农用潜在生态风险评价[J].安徽农业大学学报,2012,39(2):128-133.
    [15]李琼.城市污泥农用的可行性及风险评价研究[D].首都师范大学,2012.
    [16]铁梅,宋琳琳,惠秀娟,et al.施污土壤重金属有效态分布及生物有效性[J].生态学报,2013,33(7):2173-2181.
    [17]贾振邦,梁涛,林健枝,et al.香港河流重金属污染及潜在生态危害研究[J].北京大学学报(自然科学版),1997,33(4):485-492.
    [18]杨净,王宁.夹皮沟金矿开采区土壤重金属污染潜在生态风险评价[J].农业环境科学学报,2013,(3):595-600.
    [19]樊文华,白中科,李慧峰,et al.复垦土壤重金属污染潜在生态风险评价[J].农业工程学报,2011,27(1):348-354.
    [20]康宏宇,康日峰,张乃明,et al.迪庆某铜矿土壤重金属污染潜在生态风险评价[J].环境科学导刊,2016,(1):75-81.
    [21]徐争启,倪师军,庹先国,et al.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,31(2):112-115.
    [22]范拴喜.土壤重金属污染与控制[M].中国环境科学出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700