账户: 密码:
辽阳市生态需水估算及其首山漏斗区生态回灌计算
详细信息    本馆镜像全文|  推荐本文 | 收藏本文 |   获取CNKI官网全文
摘要
随着社会的进步、人口的增加和经济的发展,人们只注重经济的快速发展,从而忽略了生态环境问题,造成了生态环境退化、生物多样性减少、河道断流和地下水位下降等诸多问题。如何解决这些问题,使经济在环境可以承受的范围内协调发展,使人类与大自然和谐共存是现阶段急需研究的。辽阳地处东北老工业基地辽宁省的腹地,是重要的冶金、石化工业基地,地下水由于过量开采造成地下水位下降,形成多处地下漏斗,地下水质也受到不同程度的污染。水土流失也是辽阳市面临生态环境问题之一,根据辽宁省第三次土壤侵蚀遥感调查报告显示,辽阳市土地侵蚀面积已经达到了总面积的13.97%。因此保护生态环境已经刻不容缓,研究辽阳市生态需水量具有重要意义。
     本文以水文水资源学、环境科学、地理学和生态学等基础理论为指导,采用定性和定量相结合的研究方法,结合研究区的水文特征,展开了生态环境需水量的研究。从自然地理和生态系统两个方面对生态环境需水量进行科学的界定,认为生态需水量是指在一定来水条件下,为维护生态系统的特定结构、生态过程和生态系统服务功能,在天然生态保护和人工生态建设过程中所用的水量。
     本文对生态环境需水量相关概念和计算方法进行了概述,介绍了各种计算方法的优缺点和适用范围。本文研究认为生态环境需水量就是为了满足特定区域生态系统的各种基本功能健康所需要的水量。只有在明确生态目标功能的前提下,生态环境需水量才能够赋予具体的意义。
     本文论述了研究区域的生态状况、水文概况、环境现状、人文地理等。根据生态环境需水量的概念和内涵,以及确定生态环境需水量地理论框架,以区域为研究对象,进行生态区地划分,建立辽阳生态需水模型,把辽阳市生态需水划分为草地、林地、河流、地下水回灌四个部分进行计算。计算得出辽阳市草地最小生态需水量为2.25亿m~3,林地最小生态需水量为6.46亿m~3,河流的最小生态需水量为7亿m~3,地下水年回灌量为0.05亿m~3。
     根据本文调查辽阳市首山地下水超采区现有水井729眼,年开采量3.15亿m~3,而可开采量只有2.75亿m~3,超采4048万m~3,超采率达13%。经过计算河道每年入渗补给量为186.5万m~3,沙坑每年回灌量为378.2万m~3。计划到2010年,首山漏斗区共封闭开采井20眼,削减开采量3548万m~3。每年通过回灌,增加地下水补给量500万m~3。通过这几项地下水保护措施的实施,可以使首山漏斗区在2010年达到地下水利用的采补平衡。
Along with the society's progress, population's increasing and economical development,people only pay attention to the fast development of economy and neglect the ecologicalenvironment question, so there are many questions such as degeneration of ecologicalenvironment, reducing of the biodiversity, breaking of the river course and descending ofgroundwater level. How to solve these problems, make the economy harmonious develop inthe range which the environment can stand and make people and the nature harmoniouscoexistence are the major issue at preaent. Liaoyang is in the center of Liaoning Province,which is northeast old industrial base and it is an important metallurgy and petroleumindustrial base. Excessive exploitation of the ground water creates the subsoil water level todrop and forms many underground funnels. The ground water quality is also polluted indifferent degree. Furthermore, soil erosion is one of the ecological environment questions inLiaoyang. According to the third soil erosion remote sensing report of investigation to theLiaoning Province, land corrosion area in Liaoyang has already been 13.97% of the total area.Protecting ecological environment has been no delay and researching ecology water demandin Liaoyang has great significance.
     This article takes hydrology water resources science, environmental science, geographyand ecology as its struction, combining hydrology characteristic of research area, makes theecological environment water demand research. The paper makes science partition of theecological environment water demand from the physical geography and the ecosystem. Theauthor thinks the ecology water demand refers in the condition of ration coming water, inorder to maintain specific structure, ecology process and the ecosystem serving function ofthe ecosystem, using water volume in the natural ecology protection and in the artificialecology construction process.
     The paper summarizes the concept and computing methods of the ecological environmentwater demand, and introduces good and bad points and the applicable range of the computingmethods. The ecological environment water demand is the water volume demand that issaticfying the specific region ecosystem function health. Only in the premise of making surethe ecology goal function, the ecological environment water demand can endow the concretesignificance.
     This article discusses ecological status, hydrology status, environment status and humangeography of the research area. Basing on the concept and connotation and theory frame ofdetermining ecological environment water, taking the region as research object, the papercarves up the ecological region and establishes ecological environment water demand model of Liaoyang. The paper disparts the ecological environment water demand of Liaoyang aslawn, woodland, river and ground water returning irrigation four parts to compute. The resultis in Liaoyang the least ecological water demand of the lawn is 226 million m~3, the leastecological water demand of the woodland is 646 million m~3, the least ecological waterdemand of the rivers is 700 million m~3 and ground water retuming irrigation volume per yearis 5 million m~3.
     According to the investigation of the paper, Liaoyang Shoushan groundwaterexploitation region exists 729 water wells and exploitating quantity is 315 million m~3 everyyear. Thus the quantity which can be exploited is only 275 million m~3, exceeding exploitationquantity is 40.48 million m~3 and the rate of exceeding exploitation reaches 13%. After thecomputation, river course infiltration replenishment demands about 1.865 million m~3 everyyear and the sand pit returning irrigation demands about 3.782 million m~3 every year. Plans to2010, the Shoushan funnel area altogether seals upmining well 20, reduces mining quantity0.3548 million m~3. Through returns every year fills, increase ground water military suppliesquantity 50 million m~3. Through these item of ground water protective measuresimplementation, may enable the Shoushan funnel area in 2010 to achieve the ground wateruse picks makes up the balance.
引文
1.杜晓舜.2002.生态径流和生态需水理论及其在区域水资源评价中得应用.河海大学硕士论文.2003.4学报.17(1):1~8.
    2.董增川,刘凌.2001.西部地区水资源配置研究[J],水利水电技术,(3):1~4.
    3.樊自立.1998.塔里木河流域湖泊环境及可持续发展[M].北京:科学出版社,52~55.
    4.丰华丽,王超等.2001.流域生态需水量的研究[J].环境科学动态,(1),27~30.
    5.丰华丽,夏军,占车生.2003.生态环境需水研究现状和展望[J].地理科学进展.22(6)592~596.
    6.黄锡荃主编.1993.水文学[M].北京:高等教育出版社,6.
    7.贾宝全,慈龙骏.1998.干旱区生态用水的概念和分类[J].干旱区地理,21(2):8~12.
    8.姜德娟,王会肖,李丽娟.2003.生态环境需水量分类及计算方法综述[J].地理科学进展,22(4):369~378.
    9.梁季阳,蒋业放等.2000.柴达木盆地水资源决策支持系统的设计与开发研究[J].自然资源学报,17(1):27~32.
    10.梁瑞驹.2000.中国西部地区的生态用水.中国水利水电网,9.6.
    11.李自珍.2002.绿洲防护林系统的最优控制模式及其应用研究[J].地球科学进展,17(1):27~32.
    12.李丽娟,2000.郑红星.海滦河流域河流系统生态环境需水量计算[J].地理学报,55(4):496~500
    13.李丽娟,李海滨,王娟.2002.海河流域河道外生态需水研究[J].海河水利,4:9~11.
    14.林汝颜.2001.水资源价值与水资源可持续利用研究.河海大学硕士论文.3
    15.刘凌,董增川.2002内陆河生态环境需水量研究[J].湖泊科学.14(1).
    16.刘昌明.2000.我国西部大开发中有关水资源的若干问题[J].中国水利,(8):23~25.
    17.刘昌明.2002.关于生态需水量的概念与定量方法讨论稿[R].
    18.刘昌明.2002.关于生态需水量的概念和重要性[J],科学对社会的影响.(2):25~29.
    19.刘昌明.2002.二十一世纪中国水资源若干问题的讨论[J].水利水电技术,33(1):18~19.
    20.刘静玲,杨志峰.2002.湖泊生态环境需水量计算方法研究[J].自然资源学报,17(5):604~609.
    21.刘霞,王礼先,张志强.2001.生态环境用水研究进展[J].水土保持学报,15(6):58~61.
    22.钱正英.1991.中国水利[M].武汉电力出版社.3:337~366.
    23.乔云峰,王晓红等.2004.基于生态经济理论德生态需水计算方法研究[J].水科学进展,15(5):621~625.
    24.沈国舫.2000.生态环境建设与水资源保护和利用[J].中国水利,(8):26~30.
    25.沈清林,李宗礼,王以佑.1998.民勤绿洲生态用水量初步探讨[A].许新宜主编.水资源可持续管理问题研究与实践[C].武汉:武汉测绘科学大学出版社,126~129.
    26.宋郁东,樊自立等.2000.中国塔里木河水资源与生态环境问题研究[M].新疆:新疆人民出 版社.
    27.宋炳煜.1995.草原不同植物群落蒸腾蒸发研究[J].植物生态学报.19(4):83~92
    28.唐克旺,王浩,王研.2003.生态环境需水分类体系探讨[J].水资源保护.(5):5~8.
    29.吴季松著.2000.水资源及其管理德研究与应用[M].北京:中国水利水电出版社,12.
    30.吴传明,郭宣福.2003.晋江流域水资源现状分析评价[J].水利科技,3:6~7.
    31.王浩,杨小柳,阮本清,梁瑞驹.2001.流域水资源管理[M].科学出版社.11:114~132.
    32.王芳,梁瑞驹,杨小柳,陈敏建.2002.中国西北地区生态需水研究(Ⅰ)—干旱半干旱地区生态需水理论分析[J].自然资源学报.17(1):1~8.
    33.王芳.1999.干旱半干旱区生态需水量研究[D].北京:中国水利水电研究院.
    34.王根绪,程国栋.2002.干旱内陆河流域生态需水量及其估算——以黑河流域为例[J].中国沙漠,22(2):129~134.
    35.王西琴,刘昌明,杨志峰.2002.生态及环境需水量研究进展与前瞻[J],水科学进展.13(4):507~512.
    36.王芳,梁瑞驹,杨小柳等,中国西北地区生态需水研究(Ⅰ)—干旱半干旱地区生态需水理论分析[J].自然资源.
    37.魏天兴,朱金兆,张学陪.1999.林分蒸散耗水量测定方法述评[J],北京林业大学学报.21(3):85~91.
    38.伊澄清,兰智文等.1995.白洋淀水陆交错带对陆源营养物质截留作用德初步研究[J].应用水土学报,6(1):76~8
    39.杨志峰等.2003.生态环境需水量理论、方法与实践[M].北京:科学出版社.
    40.严登华,何岩,邓伟等.2001.东辽河流域河流系统生态需水研究[J].水土保持学报,15(1):46~49.
    41.张思玉,杨辽,陈戈萍.2001.生态用水的概念界定及其在西北干旱区实施的策略[J].干旱区域地理,24(3):277~281.
    42.张金屯,李素清.2003.应用生态学[M].科学出版社.3.
    43.张远,杨志峰.2002.林地生态需水量计算方法与应用[J].应用生态学报,16(2):1566~1570.
    44.张远,杨志峰.2002.黄淮海地区林地最小生态需水量研究[J].水土保持学报,13(12):72~75.
    45.朱秀端.2003.闽北常绿阔叶林德水土保持功能与保护[J].福建水土保持,15(3):17~19.
    46.郑冬燕,夏军,黄友波.2002.生态需水量估算问题德初步探讨[J].水电能源科学,20(3):3~6.
    47.左其亭.2002.干旱半干旱地区植被生态用水计算[J].水土保持学报,16(3):114~117.
    48. Armbmster J T. An infiltration index useful in estimation low-flow characteristics of drainage basins [J]. J ResUSGS, 1976,4(5):533~538.
    49. Boner M C, Furland L P. Seasonal treatment and variable effluent quality based on assimilative capacity [J]. Journal Water Pollution Control Filed. 1982,54,1408~1416.
    50. Bovee K D, A guide to stream habitat analyses using the instream flow incremental methodology[A]. Instream flow information paper No.12.FWS/OBS-82/26, Co-operative Instream Flow Group[C]1 US Fish and Wildlife Service, Office of Biological Services.
    51. Dakova Sn, Uzunov Y, Mandadjiev D. low flow-the river's ecosystem limiting factor[J]. Ecological Engineering,2000,16(1): 167~174.
    52. Frasier WM; Michelsen AM; Taylor RG; Booker JF1 Huffaker RG1 Moschini G(ed);Segerson K(ed);Se. Evaluating economic and institutional alternatives for meeting interstate ESA instream flow requirements in the Platte river basin[A], roceedings from the annual meeting of the American Agricultural Economics Association, Nashville[C],Tennessee, USA,811 August.1999,81(5):1257~1261.
    53. Geoffrey E petts. Water allocation to protect river ecosystems[J]. Regulated rivers: research & management. 1996,12,353~365.
    54. Gray.L. Environmental Water Needs Planning Criteria of the Consensus State Water Plan.Island Press, Covelo, C A, 1989,23~29.
    55. Hughes DA. Providing hydrological information and data analysis tools for the determination of ecological instream flow requirements for South African rivers[J]. Journal of Hydrology, 2001, 241, (1-2):140~151.
    56. Helmut Mader. Reducing the impact if water diversion on running waters[J]. Wasser and Bloden,2000,52(4):20~25.
    57. Jowett I G. Instram flow methods; a comparison of approaches[J]. Regulation rivers; Research and Management, 1997,13:115~127.
    58. Lamb B L. Quantifying instream flows; matching policy and technology. Instream Flow Protection in the West[M]. Trans Am Fish Soc. 111(4):413~445.
    59. King J M, Tharme R E. Assessment of the Instream Flow Incremental Flow Methodology and initial development of alternative Instream Flow methodologies for South Mrica[J]. Water Research Commission Report. 295(1):590.
    60. McMahon T A, Arenas A D. Methods of computation of low streamflow[A].Paris, UNESCO Studies and report in hydrology[C]. 1982.36,107.
    61. Martin Pusch, Andras Hoffmann. Conservation concept for a river ecosystem impacted by flow abstraction in a large postmining area[J]. Landscape and Planning.2000,51 (2): 165~176.
    62. Mosely M P. The effect of changing discharge on channel morphology and instream uses and in a braide river, Ohau River, New Zealand[J]. Water Resources Researches. 1982,18,800~812.
    63. Orth D J, Maughan O E, Evaluation of the incremental methodology for recommending instream flows for fishes[J].
    64. Reiser D W, Wesehe T A, Estes C. Status of instream flow legislation and practice in North American[J]. Fisheris. 1989,14,22~29.
    65. Sheail J.'Historycal development of setting compensation flows', in Gustad [A].A.,Cole,C,Marshall,D,and Bayliss,B.(Eds),A Study of compensation flows in the UK, Report 99[C]. Institute of Hydrology,Wallingford.Appendix(Ⅰ). 1984.
    66. Svensson BS. Hydropower and instream flow requirements for fish in Sweden[J]. Fisheries Management & Ecology,2000,7,(1-2):145~155.
    67. StatznerB, MullerR. Standard hemispheres an indicators of flow characteristics in groben[A]1 Fresh water Biology[C]. 1989,21:445~459.
    68. Salinas MJ,;Blanca G.;Romero AT. Evaluating riparian vegetation in semi-arid Mediterranean watercourses in the south-eastern Iberian Peninsula[J]. Environmental Conservationm, 2000, 27 (1): 24~25.
    69. Tennant D L. 'Instream flow regimens for fish, wildlife, recreation , and related environmental resources', in Orsbom[A].J F, And Allman, C H(ed), Proceedings of Symposium and Specility Conference on Instream Flow Needs, American Fisheries Society[C]. Bethesda'Maryland. 1976,359~373.
    70. Willian Whipple. A proposed approach to coordination of water resources development and environmental regulations[J]. Journal of the American Water Resources Association. 1999,35(4):73~89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅:66554900、66554949;咨询服务:66554800;科技查新:66554700