用户名: 密码: 验证码:
氮气幕对瓦斯爆炸进行阻爆实验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental on the prevention of gas explosion by nitrogen curtain
  • 作者:路长 ; 王鸿波 ; 张运鹏 ; 朱寒 ; 余明高
  • 英文作者:LU Chang;WANG Hongbo;ZHANG Yunpeng;ZHU Han;YU Minggao;State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University;The Collaborative Innovation Center of Coal Safety Production of Henan Province;State Key Laboratory of Coal Mine Disaster Dynamics Control, Chongqing University;
  • 关键词:甲烷 ; 爆炸 ; 安全 ; 氮气 ; 阻爆 ; 喷气时刻
  • 英文关键词:methane;;explosion;;safety;;nitrogen curtain;;preventing the explosion;;spurting moment
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:河南理工大学瓦斯地质与瓦斯治理国家重点实验室培育基地;河南理工大学煤炭安全生产河南省协同创新中心;重庆大学煤矿灾害动力学与控制国家重点实验室;
  • 出版日期:2019-05-05 09:37
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.334
  • 基金:国家自然科学基金(51674103,51774059);; 教育部创新团队发展计划(IRT_16R22)
  • 语种:中文;
  • 页:HGJZ201907005
  • 页数:9
  • CN:07
  • ISSN:11-1954/TQ
  • 分类号:49-57
摘要
为阻断瓦斯爆炸在管道方向上的传播,保护管道后方区域,本文采用氮气幕来进行阻爆,所设计的实验装置在爆炸发生后能自动喷出氮气。主要研究了氮气的喷气压力和喷气时刻对阻爆功能的影响。结果表明,在喷气压力为0.1MPa时,氮气幕仅起到抑制作用,爆炸火焰能穿过整个实验管道。在喷气压力为0.2MPa时,仅部分实验能够阻爆,氮气幕产生不稳定的阻爆效果。在喷气压力为0.3MPa时,阻爆位置均稳定在左喷头和右喷头之间区域,氮气幕产生稳定地阻爆效果。喷气压力超过0.4MPa后,阻爆位置稳定在右喷头附近。在较低氮气压力0.2MPa下,喷气时刻对阻爆效果产生显著影响。随着喷气时刻延迟,氮气喷出量减小,氮气幕由不稳定阻爆变为不阻爆。喷气时刻延迟到198ms后,氮气幕便丧失阻爆功能。在喷气压力超过0.3MPa后,氮气幕阻爆效果便不受喷气时刻的影响,喷气压力对能否阻爆起决定作用。
        In order to stop the propagation of gas explosion along the duct and to protect the downstream area of the duct, the nitrogen curtain is adopted to prevent the explosion. The nitrogen can automatically be spurted out by the designed experimental apparatus after the occurrence of explosion. In this paper,the effect of nitrogen pressure and spurting moment on the prevention of explosion was studied. The results showed that when the nitrogen pressure is 0.1 MPa, the nitrogen curtain only has the effect of suppression. The explosion flame can spread through the whole duct. When the nitrogen pressure is 0.2 MPa, only part of the experiments can prevent the explosion. The nitrogen curtain has an unstable effect of prevention of explosion. When the nitrogen pressure is 0.3 MPa, the preventing position is stable between the left nozzle and the right nozzle. The nitrogen curtain is stable on the prevention of explosion.When the nitrogen pressure exceeds 0.4 MPa, the preventing position is stable at the right nozzle. At the lower nitrogen pressure of 0.2 MPa, the nitrogen spurting moment has a significant effect on the prevention. With the delay of spurting moment, the magnitude of spurted nitrogen decreases. And the nitrogen curtain changed from unstable prevention to failure of prevention. When the spurting moment delays 198 ms, the nitrogen curtain will lose the ability of the prevention of explosion. When the nitrogen pressure is larger than 0.3 MPa, the preventing effect of the nitrogen curtain will not be affected by the spurting moment. The nitrogen pressure can be a decisive role in the prevention of explosion.
引文
[1]张网,杨昭,李晋,等.易燃易爆危险品火灾危险性分级标准概述[J].化工进展, 2013, 32(8):1749-1754.ZHANG Wang, YANG Zhao, LI Jin, et al. Overview on fire hazard grading standard for flammable and explosive dangerous goods[J].Chemical Industry and Engineering Progress, 2013, 32(8):1749-1754.
    [2] WANG Fahui, YU Minggao, WEN Xiaoping, et al. Suppression of methane/air explosion in pipeline by water mist[J]. Journal of Loss Prevention in the Process Industries, 2017, 49(7):791-796.
    [3]薛少谦,黄子超.细水雾粒度对瓦斯抑爆效果的影响研究[J].西安科技大学学报, 2015, 35(5):644-649.XUE Shaoqian, HUANG Zichao. Impact of water mist particle size on gas explosion suppression effect[J]. Journal of Xi’an University of Science and Technology, 2015, 35(5):644-649.
    [4]余明高,吴丽洁,万少杰,等.含NaCL荷电细水雾对甲烷爆炸火焰传播的抑制特性[J].化工学报, 2017, 68(11):4445-4452.YU Minggao, WU Lijie, WAN Shaojie, et al. Inhibition characteristics on methane explosion flame propagation affected by charged water mist containing sodium chloride additive[J]. CIESC Journal, 2017, 68(11):4445-4452.
    [5] CAO Xingyan, REN Jingjie, BI Mingshu, et al. Experimental research on the characteristics of methane/air explosion affected by ultrafine water mist[J]. Journal of Hazardous Materials, 2017, 324(14):489-497.
    [6] CAO Xingyan, REN Jingjie, BI Mingshu, et al. Experimental research on methane/air explosion inhibition using ultrafine water mist containing additive[J]. Journal of Loss Prevention in the Process Industries, 2016, 43(6):352-360.
    [7]樊小涛,李润之,薛少谦.煤矿瓦斯爆炸水幕隔爆效果实验研究[J].矿业安全与环保, 2011, 38(2):17-19.FAN Xiaotao, LI Renzhi, XUE Shaoqian. Experimental study on the effect of water curtain on gas explosion in coal mine[J]. Mining Safety&Environmental Protection, 2011, 38(2):17-19.
    [8] DOUNIA Omar, VERMOREL Olivier, POINSOT Thierry. Theoretical analysis and simulation of methane/air flame inhibition by sodium bicarbonate particles[J]. Combustion and Flame, 2018, 193(24):313-326.
    [9] LIU Qingming, HU Yongli, BAI Chunhua, et al. Methane/coal dust/air explosions and their suppression by solid particle suppressing agents in a large-scale experimental tube[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6):310-316.
    [10]罗振敏,邓军,文虎,等.纳米粉体抑制矿井瓦斯爆炸的实验研究[J].中国安全科学学报, 2008, 18(12):84-88.LUO Zhenmin, DENG Jun, WEN Hu, et al. Experimental study on the suppression of gas explosion with nanometer powder in coal mines[J].China Safety Science Journal, 2008, 18(12):84-88.
    [11]余明高,孔杰,王燕,等.改性赤泥粉体抑制瓦斯爆炸的实验研究[J].煤炭学报, 2014, 39(7):1289-1295.YU Minggao, KONG Jie, WANG Yan, et al. Experimental research on gas explosion suppression by modified red mud[J]. Journal of China Coal Society, 2014, 39(7):1289-1295.
    [12]黄子超,司荣军,薛少谦.抑爆剂浓度及粒度对瓦斯爆炸抑制效果的影响[J].中国安全科学与技术, 2018, 14(4):89-94.HUANG Zichao, SI Rongjun, XUE Shaoqian. Influence of concentration and granularity of powder explosion suppressant on suppression effect of gas explosion[J]. Journal of Safety Science and Technology, 2018, 14(4):89-94.
    [13] LI Runzhi, SI Rongjun, GAO Ke, et al. Experimental study on the effect of explosion suppression in low-concentration gas transportation[J]. Journal of Loss Prevention in the Process Industries, 2018, 54(7):216-221.
    [14]王信群,孔丽丽,徐海顺,等.超细粉体云幕抑制大型管道内瓦斯爆炸火焰传播[J].煤炭学报, 2017, 42(6):1482-1488.WANG Xinqun, KONG Lili, XU Haishun, et al. Suppression of methane/air flame propagation in large scale pipelines by clouds of ultrafine powders[J]. Journal of China Coal Society, 2017, 42(6):1482-1488.
    [15] LIANG Yuntao, ZENG Wen, HU Erjiang. Experimental study of the effect of nitrogen addition on gas explosion[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(7):1-9.
    [16] ZHANG Bo, SHEN Xiaobo, PANG Lei. Effects of argon/nitrogen dilution on explosion and combustion characteristics of dimethyl etherair mixtures[J]. Fuel, 2015, 159(9):646-652.
    [17]路长,刘洋,于子凯,等.四氟乙烷对甲烷/空气爆炸特性的影响[J].化工进展, 2017, 36(10):3596-3603.LU Chang, LIU Yang, YU Zikai, et al. Experimental study on the effects of R134a on the characteristics of methane/air explosion[J].Chemical Industry and Engineering Progress, 2017, 36(10):3596-3603.
    [18] MITU Maria, GIURCAN Venera, RAZUS Domnina, et al. Inert gas influence on the laminar burning velocity of methane-air mixtures[J].Journal of Hazardous Materials, 2017, 321(37):440-448.
    [19] ZENG Wen, MA Hongan, LIANG Yuntao, et al. Experimental and modeling study on effects of N2and CO2on ignition characteristics of methane/air mixture[J]. Journal of Advanced Research, 2015, 6(4):189-201.
    [20] WANG Z R, NI L, LIU X, et al. Effects of N2/CO2on explosion characteristics of methane and air mixture[J]. Journal of Loss Prevention in the Process Industries, 2015, 31(7):10-15.
    [21]霍春秀.瓦斯输送管道水封阻火泄爆技术研究[J].煤炭科学技术,2014, 42(8):29-32.HUO Chunxiu. Study on water sealing fire barriering and explosion venting technology applied to gas transport pipeline[J]. Coal Science and Technology, 2014, 42(8):29-32.
    [22]邵继伟,庄春吉,王志荣,等.组合型多孔材料对容器管道系统内甲烷/空气的抑爆效果[J].爆炸与冲击, 2018, 38(4):905-912.SHAO Jiwei, ZHUANG Chunji, WANG Zhirong, et al. Explosion suppression effect of CH4/air by combined porous materials in a container piping system[J]. Explosion and Shock Waves, 2018, 38(4):905-912.
    [23] WANG Zheng, SUN Bing, HUANG Qingshan, et al. An integrated model for predicting flame propagation in crimped ribbon flame arresters[J]. Journal of Chemical Engineering, 2018, 26(7):930-941.
    [24]周凯元,李宗芳,周自金.波纹板阻火器对爆燃火焰淬熄作用的实验研究[J].中国科学技术大学学报, 1997, 27(4):449-454.ZHOU Kaiyuan, LI Zengfang, ZHOU Zijin. The quenching of deflagration by crimped-ribbon flame arresters[J]. Journal of China University of Science and Technology, 1997, 27(4):449-454.
    [25] WANG Luqiang, MA Honghao, SHEN Zhaowu. The quenching of propane deflagrations by crimped ribbon flame arrestors[J]. Journal of Loss Prevention in the Process Industries, 2016, 43(7):567-574.
    [26] SUN Shaochen, LIU Gang, LIU Junxuan, et al. Effect of porosity and element thickness on flame quenching for in-line crimped-ribbon flame arresters[J]. Journal of Loss Prevention in the Process Industries,2017, 50(9):221-228.
    [27]李志锋,余明高,纪文涛,等.障碍物诱导瓦斯爆炸湍流火焰数值模拟[J].河南理工大学学报(自然科学版), 2015, 34(2):167-170.LI Zhifeng, YU Minggao, JI Wentao, et al. Numerical simulation on turbulent flame in gas explosion induced by obstacles[J]. Journal of Henan Polytechnic University(Natural Science), 2015, 34(2):167-170.
    [28]祝钊,贾振元,王魁军.煤矿阻爆快速蝶阀系统静力学设计及其动态特征仿真分析[J].煤炭学报, 2013, 38(1):161-166.ZHU Zhao, JIA Zhenyuan, WANG Kuijun. Mechanical properties of the high triple offset butterfly valve used in gas drainage pipeline explosion resistance[J]. Journal of China Coal Society, 2013, 38(1):161-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700