用户名: 密码: 验证码:
陶瓷基微反应器制备的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A review on the microfabrication of ceramic microreactors
  • 作者:刘润阳 ; 颜婷珪 ; 张婷 ; 田蒙奎
  • 英文作者:LIU Runyang;YAN Tinggui;ZHANG Ting;TIAN Mengkui;School of Chemistry and Chemical Engineering, Guizhou University;
  • 关键词:陶瓷微反应器 ; 微通道 ; 微加工 ; 微反应技术
  • 英文关键词:ceramic microreactors;;microchannels;;microfabrication;;microreaction technology
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:贵州大学化学与化工学院;
  • 出版日期:2019-05-05 10:02
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.335
  • 基金:国家自然科学基金(21663009);; 贵州省石墨装备制造及应用科技创新人才团队项目[黔科合人才团队(2015)4004号];; 贵州省优秀青年科技人才计划[黔科合平台人才(2017)5605];; 贵州省科技计划[黔科合平台人才(2017)5788号]
  • 语种:中文;
  • 页:HGJZ201908002
  • 页数:9
  • CN:08
  • ISSN:11-1954/TQ
  • 分类号:17-25
摘要
微反应器中亚毫米级的流体通道具有高效的传质传热效应,使其能够强化反应过程。随着微细加工技术的发展,制备出了耐高温耐腐蚀的陶瓷基微反应器,适用于更严苛的反应条件,然而陶瓷基微反应器的制备存在微结构成型工艺复杂、密封难度较大等问题。本文主要介绍不同陶瓷材料微反应器的制备工艺,重点论述陶瓷基微反应器制备过程中常规微加工技术的优化和新型微加工技术的引入,对比这些技术对微结构成型的改善效果。列举常用的陶瓷微通道密封连接方法,概述其特点和适用范围。并提出在陶瓷基微反应器制备的后续研究过程中,应注重陶瓷基微反应器制备的成功率和新技术的开发,完善陶瓷基微反应器的性能,将陶瓷基微反应器引入到更广泛的应用体系中。
        The microchannel of the microreactor enables it to have high efficient mass and heat transfer,which can strengthen the reaction process. With the development of micromachining technology, the ceramic microreactors with the advantages of overcoming high temperature and chemical resistance have been processed, which can be applied to more severe reaction conditions. However, ceramic microreactors need complicated producting process. In this paper, the microfabrication of different materials was mainly introduced. The conventional microfabrication technology and the new microfabrication technology were discussed in detail, which improve the microfabrication of the microchannels. At the same time, the sealed connection methods of ceramic microchannels were briefly listed, and their characteristics and application ranges were summarized. It was proposed to focus on the qualified rate of ceramic microreactors and the development of new technology in the future study. The performance of ceramic microreactors should be improved, and expands the application range of ceramic microreactors.
引文
[1]YUE J.Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis[J].Catalysis Today,2017,308:3-19.
    [2]HONDA T,MIYAZAKI M,NAKAMURA H,et al.Controllable polymerization of N-carboxy anhydrides in a microreaction system[J].Lab on a Chip,2005,5(8):812-818.
    [3]董广新,蒋稼欢.基于微流动混合的微纳米粒子合成进展[J].化工进展,2010,29(11):2026-2033.DONG G X,JIANG J H.Recent progress in microfluidic mixing-based synthesis of micro/nanoparticles[J].Chemical Industry and Engineering Progress,2010,29(11):2026-2033.
    [4]GóMEZDE P S,MARTíNEZCISNEROS C S,PUYOL M,et al.Microreactor with integrated temperature control for the synthesis of CdSe nanocrystals.[J].Lab on a Chip,2012,12(11):1979-1986.
    [5]ABIEV R,SVETLOV S,HAASE S.Hydrodynamics and mass transfer of gas-liquid and liquid-liquid taylor flow in micro channels:a review[J].Chemical Engineering&Technology,2017,40(11):1985-1998.
    [6]GARCíA-HERNANDO N,ACOSTA-IBORRA A,RUIZ-RIVAS U,et al.Experimental investigation of fluid flow and heat transfer in a single-phase liquid flow micro-heat exchanger[J].International Journal of Heat&Mass Transfer,2009,52(23):5433-5446.
    [7]HEGGO D,OOKAWARA S.Multiphase photocatalytic microreactors[J].Chemical Engineering Science,2017,169:66-67.
    [8]KRIVEC M,SUHADOLNIK L,CEH M,et al.Highly efficient TiO2-based microreactor for photocatalytic applications[J].Applied Materials&Interfaces,2013,5(18):9088-9094.
    [9]WANG K,LUO G.Microflow extraction:a review of recent development[J].Chemical Engineering Science,2016,169:18-33.
    [10]WANG N,ZHANG X,WANG Y,et al.Microfluidic reactors for photocatalytic water purification.[J].Lab on a Chip,2014,14(6):1074-1082.
    [11]ILIESCU C,TAYLOR H,AVRAM M,et al.A practical guide for the fabrication of microfluidic devices using glass and silicon[J].Biomicrofluidics,2012,6(1):16505.
    [12]HEULE M,VUILLEMIN S,GAUCKLER L J.Powder‐based ceramic meso-and microscale fabrication processes[J].Advanced Materials,2003,15(15):1237-1245.
    [13]MORENO A M,WILHITE B A.Autothermal hydrogen generation from methanol in a ceramic microchannel network[J].Journal of Power Sources,2010,195(7):1964-1970.
    [14]EHRFELD W,HESSEL V,L?WE H.Microreactors:new technology for modern chemistry[M].NewYork:Wiley-VCH,2001.
    [15]SATTARI-NAJAFABADI M,ESFAHANY M N,WU Z,et al.Mass transfer between phases in microchannels:a review[J].Chemical Engineering and Processing-Process Intensification,2018,127:213-237.
    [16]陈光文,赵玉潮,乐军,等.微化工过程中的传递现象[J].化工学报,2013,64(1):63-75.CHEN G W,ZHAO Y C,LE J,et al.Transport phenomena in microchemical engineering[J].Journal of Chemical Industry and Engineering(China),2013,64(1):63-75.
    [17]WANG K,LI L,XIE P,et al.Liquid-liquid microflow reaction engineering[J].Reaction Chemistry&Engineering,2017,2(5):661-627.
    [18]任武荣.陶瓷先驱体制备微流控芯片及其化学应用[D].长沙:国防科学技术大学,2015.REN W R.Fabrication of microfluidic reactors from preceramic polymers and chemistry application[D].Changsha:Graduate School of National University of Defense Technology,2015.
    [19]MALECHA K,REMISZEWSKA E,PIJANOWSKA D G.Surface modification of low and high temperature co-fired ceramics for enzymatic microreactor fabrication[J].Sensors&Actuators B:Chemical,2014,190(1):873-880.
    [20]刘朝杨,程璇.透明超疏水疏油涂层的制备及性能[J].功能材料,2013,44(6):870-873.LIU Z Y,CHENG X.Synthesis and properties of transparent superhydrophobic and oleophobic coatings[J].Journal of Functional Materials,2013,44(6):870-873.
    [21]XIAO C,SI L,LIU Y,et al.Ultrastable coaxial cable-like superhydrophobic mesh with self-adaption effect:facile synthesis and oil/water separation application[J].Journal of Materials Chemistry A,2016,4(21):8080-8090.
    [22]陈俊,王振辉,王玮,等.超疏水表面材料的制备与应用[J].中国材料进展,2013,32(7):399-405.CHEN J,WANG Z H,WANG W,et al.Preparation and application of super hydrophobic surfaces[J].Materials China,2013,32(7):399-405.
    [23]陈光文,袁权.微化工技术[J].化工学报,2003,54(4):427-439.CHEN W G,YUAN Q.Micro-chemical technology[J].Journal of Chemical Industry and Engineering(China),2003,54(4):427-439.
    [24]GAUDET M,ARSCOTT S.A user-friendly guide to the optimum ultraviolet photolithographic exposure and greyscale dose of SU-8photoresist on common MEMS,microsystems,and microelectronics coatings and materials[J].Analytical Methods,2017,9(17):2495-2504.
    [25]DRIESCHE S V D,LUCKLUM F,BUNGE F,et al.3D printing solutions for microfluidic chip-to-world connections[J].Micromachines,2018,9(2):71.
    [26]KNITTER R,G?HRING D,RISTHAUS P,et al.Microfabrication of ceramic microreactors[J].Microsystem Technologies,2001,7(3):85-90.
    [27]KNITTER R,LIAUW M A.Ceramic microreactors for heterogeneously catalysed gas-phase reactions[J].Lab on a Chip,2004,4(4):378-383.
    [28]WANG J,LIU G,XIONG Y,et al.Fabrication of ceramic microcomponents and microreactor for the steam reforming of ethanol[J].Microsystem Technologies,2008,14(9/10/11):1245-1249.
    [29]KEE R J,ALMAND B B,BLASI J M,et al.The design,fabrication,and evaluation of a ceramic counter-flow microchannel heat exchanger[J].Applied Thermal Engineering,2011,31(11/12):2004-2012.
    [30]MURPHY D M,MANERBINO A,PARKER M,et al.Methane steam reforming in a novel ceramic microchannel reactor[J].International Journal of Hydrogen Energy,2013,38(21):8741-8750.
    [31]MURPHY D M,PARKER M,SULLIVAN N P.The interplay of heat transfer and endothermic chemistry within a ceramic microchannel reactor[J].Journal of Thermal Science&Engineering Applications,2014,6(3):031007.
    [32]BLAKELEY B,SULLIVAN N.Fuel processing in a ceramic microchannel reactor:expanding operating windows[J].International Journal of Hydrogen Energy,2016,41(6):3794-3802.
    [33]ARAN H C,CHINTHAGINJALA J K,GROOTE R,et al.Porous ceramic mesoreactors:a new approach for gas-liquid contacting in multiphase microreaction technology[J].Chemical Engineering Journal,2011,169(1/2/3):239-246.
    [34]ARAN H C,SALAMON D,RIJNAARTS T,et al.Porous photocatalytic membrane microreactors(P2M2):a new reactor concept for photochemistry[J].Journal of Photochemistry&Photobiology A:Chemistry,2011,225(1):36-41.
    [35]MESCHKE F,RIEBLER G,HESSEL V,et al.Hermetic gas-tight ceramic microreactors[J].Chemical Engineering&Technology,2005,28(4):465-473.
    [36]NEWMAN S G,GU L,LESNIAK C,et al.Rapid Wolff-Kishner reductions in a silicon carbide microreactor[J].Green Chemistry,2013,16(1):176-180.
    [37]BELAVIC D,HROVAT M,DOLANC G,et al.Design of LTCC-based ceramic structure for chemical microreactor[J].Radio Engineering,2012,21(1):195-200.
    [38]OKAMASA T,LEE G G,SUZUKI Y,et al.Development of a micro catalytic combustor using high-precision ceramic tape casting[J].Journal of Micromechanics&Microengineering,2006,16(9):198-205.
    [39]MALECHA K,MAEDER T,JACQ C.Fabrication of membranes and microchannels in low-temperature co-fired ceramic(LTCC)substrate using novel water-based sacrificial carbon pastes[J].Journal of the European Ceramic Society,2012,32(12):3277-3286.
    [40]KHOONG L E,TAN Y M,LAM Y C.Overview on fabrication of threedimensional structures in multi-layer ceramic substrate[J].Journal of the European Ceramic Society,2010,30(10):1973-1987.
    [41]JIANG B,HABER J,RENKEN A,et al.Fine structuration of lowtemperature co-fired ceramic(LTCC)microreactors[J].Lab on a Chip,2014,15(2):563-74.
    [42]GóMEZDE P S,PUYOL M,IZQUIERDO D,et al.A ceramic microreactor for the synthesis of water soluble CdS and CdS/ZnSnanocrystals with on-line optical characterization.[J].Nanoscale,2012,4(4):1328-1335.
    [43]MARTíNEZ-CISNEROS C S,PEDRO G D,PUYOL M,et al.Design,fabrication and characterization of microreactors for high temperature syntheses[J].Chemical Engineering Journal,2012,211/212(47):432-441.
    [44]IBá?EZ-GARCíA N,ALONSO J,MARTíNEZ-CISNEROS C S,et al.Green-tape ceramics.New technological approach for integrating electronics and fluidics in microsystems[J].Trac Trends in Analytical Chemistry,2008,27(1):24-33.
    [45]SIKANEN T,AURA S,HEIKKIL?L,et al.Hybrid ceramic polymers:new,nonbiofouling,and optically transparent materials for microfluidics.[J].Analytical Chemistry,2010,82(9):3874-82.
    [46]MALECHA K.The implementation of fluorescence-based detection in LTCC microfluidic modules[J].International Journal of Applied Ceramic Technology,2016,13(1):69-77.
    [47]MALECHA K,PIJANOWSKA D G,GOLONKA L J,et al.Low temperature co-fired ceramic(LTCC)-based biosensor for continuous glucose monitoring[J].Sensors&Actuators B:Chemical,2011,155(2):923-929.
    [48]MALECHA K,GANCARZ I,GOLONKA L J.A PDMS/LTCC bonding technique for microfluidic application[J].Journal of Micromechanics&Microengineering,2009,19(10):105016.
    [49]MALECHA K,GANCARZ I,TYLUS W.Argon plasma-assisted PDMS-LTCC bonding technique for microsystem applications[J].Journal of Micromechanics&Microengineering,2012,20(11):115006.
    [50]COUCEIRO P,ALONSOCHAMARRO J.Microfabrication of monolithic microfluidic platforms using low temperature co-fired ceramics suitable for fluorescence imaging.[J].Analytical Chemistry,2017,89(17):9147-9153.
    [51]COLOMBO P,MERA G,RIEDEL R,et al.Polymer-derived ceramics:40 years of research and innovation in advanced ceramics[J].Journal of the American Ceramic Society,2010,93(7):1805-1837.
    [52]KUMAR B V M,KIM Y W.Processing of polysiloxane-derived porous ceramics:a review[J].Science&Technology of Advanced Materials,2010,11(4):69801-69803.
    [53]REN W,PERUMAL J,WANG J,et al.Whole ceramic-like microreactors from inorganic polymers for high temperature or/and high pressure chemical syntheses.[J].Lab on a Chip,2014,14(4):779-786.
    [54]PARK Y J,YU T,YIM S J,et al.A 3D-printed flow distributor with uniform flow rate control for multi-stacked microfluidic systems.[J].Lab on a Chip,2018,18(8):1250-1258.
    [55]LEE W,KWON D,CHOI W,et al.3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section.[J].Scientific Reports,2015,5(2):7717.
    [56]李亚运,司云晖,熊信柏,等.陶瓷3D打印技术的研究与进展[J].硅酸盐学报,2017,45(6):793-805.LI Y Y,SI Y H,XIONG X B,et al.Research and progress on three dimensional printing of ceramic materials[J].Journal of the Chinese Ceramic Society,2017,45(6):793-805.
    [57]陶文亮,田蒙奎.陶瓷膜管与铁磁膨胀合金的连接工艺研究[J].贵州工业大学学报(自然科学版),2003,32(2):8-10.TAO W L,TIAN M L.The study of connecting technique between ceramic membrane tube and iron-alloy[J].Journal of Guizhou University of Technology(Natural Science Edition),2003,32(2):8-10.
    [58]王玲玲,丁毅,马立群.金属和陶瓷的钎焊技术及新发展[J].焊接技术,2007,36(5):1-3.WANG L L,DING Y,MA L Q.Brazing technology and new development of metal and ceramics[J].Welding Technology,2007,36(5):1-3.
    [59]FAN D,HUANG J,SUN X,et al.Correlation between microstructure and mechanical properties of active brazed Cf/SiC composite joints using Ti-Zr-Be[J].Materials Science&Engineering A,2016,667:332-339.
    [60]SINGH M,ASTHANA R.Joining and integration of ZrB2-based ultrahigh temperature ceramic composites using advanced brazing technology[J].Journal of Materials Science,2010,45(16):4308-4320.
    [61]韩敏,陶文亮,艾浩,等.α-Al2O3陶瓷膜管与金属粘接强度的实验研究[J].粘接,2007,28(4):32-35.HAN M,TAO W L,AI H,et al.Study on bonding strength ofα-Al2O3ceramic membrane tube to steel[J].Adhesion,2007,28(4):32-35.
    [62]郑瑞琪,余云照.结构胶粘剂及胶接技术[M].北京:科学出版社,1993.ZHENG R Q,YU Y Z.Structural adhesive and bonding technology[M].Beijing:Science Press,1993.
    [63]魏晓莹,王汝敏,闫超,等.改性耐高温胶粘剂的研究进展[J].中国胶粘剂,2010,19(5):54-58.WEI X Y,WANG R M,YAN C,et al.Research progress of modified adhesives for high-temperature resistance[J].China Adhesives,2010,19(5):54-58.
    [64]刘成伦,徐锋.混合硅酸盐无机胶粘剂的研制[J].中国胶粘剂,2005,14(11):19-22.LIU C L,XU F.Development of a compound silicate inorganic adhesives[J].China Adhesives,2005,14(11):19-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700