用户名: 密码: 验证码:
冲击荷载作用下煤矿泥岩能量耗散试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on energy dissipation of mudstone in coal mine under im-pact loading
  • 作者:王梦想 ; 汪海波 ; 宗琦
  • 英文作者:WANG Mengxiang;WANG Haibo;ZONG Qi;School of Civil Engineering and Architecture,Anhui University of Science & Technology;
  • 关键词:煤矿泥岩 ; 分离式霍普金森压杆 ; 能量耗散 ; 应变率 ; 破碎破裂
  • 英文关键词:mudstone;;SHPB;;energy dissipation;;strain rate;;broken fracture
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:安徽理工大学土木建筑学院;
  • 出版日期:2019-06-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.297
  • 基金:国家自然科学基金资助项目(51274009,51404010);; 安徽省高校自然科学研究重大资助项目(KJ2017ZD11)
  • 语种:中文;
  • 页:MTXB201906010
  • 页数:10
  • CN:06
  • ISSN:11-2190/TD
  • 分类号:96-105
摘要
岩石破裂破碎实质是一个能量吸收与耗散的过程,煤矿岩巷钻爆掘进过程中,既要有足够的爆炸能量使待开挖区岩石破裂破碎和抛掷、形成空腔,又要控制爆炸能量对保留岩体造成的损伤,尤其是冲击荷载作用时强度较低的泥岩的动态响应特性更需要重点研究。以淮南矿区典型巷道泥岩为研究对象,利用直径50 mm分离式Hopkinson试验装置开展不同冲击气压下泥岩动态压缩试验,研究在冲击荷载作用下泥岩的动态力学性能和破裂破碎特征,重点研究动荷载作用下泥岩的能量耗散规律。为了进一步揭示泥岩动态破碎破裂与泥岩构成主要化学成分与细观结构之间的关系,对泥岩的静态物理力学性能进行了测试并进行泥岩的X射线荧光光谱(XRF)和X射线衍射(XRD)测试,确定其主要组分、化学和颗粒成份;同时采用放大1 000倍的电子数码显微镜对泥岩试件表面、断口进行放大观察,从岩石细观结构出发,通过对细观结构变化、物理与力学过程的分析研究了岩石的损伤及其演化。结果表明:泥岩的主要化学成分主要为Si O2,其次为Al2O3,Fe2O3,其力学强度低,物理性能指标差,在冲击荷载作用下,泥岩内部大量空隙缺陷(如空穴,位错,微裂隙等)动力学过程加剧,形成损伤;在应力波的持续作用下,大量的微损伤和微观不均匀处在试件内部进行复杂的演化,在颗粒内部结构、沿颗粒间裂缝和沿晶粒界会产生大量的微裂纹并发展,在构造边界碎片分层、夹杂物中也产生裂纹,泥岩试件最终产生环向断裂破坏和轴向劈裂拉伸破坏;试件吸收能、透射能和反射能均随入射能增加而增加,分别呈线性、对数和二次函数形式增长;试件吸收能可以用单位体积耗能密度、单位质量耗能和吸收阻抗比能表征,三者均随入射能增加呈线性增长,随应变率呈二次函数增长。
        Rock crushing is essentially a process of energy absorption and dissipation. In the process of drilling and blasting during the excavation of rock roadway in coal mine,not only sufficient energy should be required to cause rock failure and rupture in the excavation zone,but also the damage caused by explosive energy to retained rock mass should be controlled. Especially the dynamic response characteristics of mudstone with lower strength under impact loading need to be studied emphatically. Taking the mudstone of typical roadway in Huainan mining area as the research object,a 50 mm diameter separated Hopkinson test device is used for the impact compression test on mudstone under different impact pressures to study the dynamic mechanical properties of mudstone and the characteristics of fracture and fragmentation of specimens under dynamic loading.The energy dissipation law of mudstone under dynamic loading was emphatically studied. To further reveal the relationship between the dynamic fracturing of mudstone with the main chemical composition and micro-structure of mudstone,the static physical and mechanical properties of mudstone were tested,and the X-ray fluorescence spectroscopy( XRF) and X-ray diffraction( XRD) of mudstone were carried out to determine the main composition,chemical composition and particle composition of mudstone.The surface and fracture of mudstone specimens were magnified and observed with a 1 000-fold magnification electronic digital microscope.Based on the meso-structure of rock,the damage and evolution of rock were studied through the analysis of the changes of meso-structure,physical and mechanical processes.The results show that the main chemical composition of mudstone is mainly SiO2,followed by Al2 O3 and Fe2 O3,which have low mechanical strength and poor physical properties.The dynamic process of a large number of void defects( such as voids,dislocations,micro-fissures,etc.) in mudstone intensifies and results in damage under impact loading.Under the continuous action of stress wave,a large number of micro-damage and micro-inhomogeneity occur in the specimen and undergo complex evolution.A large number of microcracks will occur and develop in the internal structure of particles,along intergranular cracks and along grain boundaries,as well as in the stratification of fragments and inclusions at the structural boundaries.Under the action of the back-and-forth reflection of the stress wave,the mudstone specimens produce circumferential failure and axial splitting damage.The absorption energy of the specimen increases linearly with the increase of the incident energy. The transmission energy of the specimen increases logarithmically with the increase of the incident energy. The reflection energy of the specimen increases in the form of Quadratic function with the incident energy.The energy density per unit volume,unit mass energy,and absorption impedance energy can be used to characterize the absorbed energy of the sample,which increases linearly with the incident energy and quadratically with the strain rate.
引文
[1]孟召平,彭苏萍.煤系泥岩组分特征及其对岩石力学性质的影响[J].煤田地质与勘探,2004,2(2):14-16.MENG Zhaoping,PENG Suping.Mudstone composition of coal measures and its influenceon the mechanical properties[J].Coal Geology&Exploration,2004,2(2):14-16.
    [2]戴俊.岩石动力学特性与爆破理论(2版)[M].北京:冶金工业出版社,2013:70-104.
    [3]姜耀东,潘一山,姜福兴,等.我国煤炭开采中的冲击地压机理和防治[J].煤炭学报,2014,39(2):205-213.JIANG Yaodong,PAN Yishan,JIANG Fuxing,et al. State of the art review on mechanism and prevention of coal bumps in China[J].Journal of China Coal Society,2014,39(2):205-213.
    [4]李学华,梁顺,姚强岭,等.泥岩顶板巷道围岩裂隙演化规律与冒顶机理分析[J].煤炭学报,2011,36(6):903-908.LI Xuehua,LIANG Sun,YAO Qiangling,et al. Dynamic shock test of coal and rock under different strain rates[J]. Journal of China Coal Society,2011,36(6):903-908.
    [5]彭苏萍,高云峰,彭晓波,等.淮南煤田含煤地层岩石物性参数研究[J].煤炭学报,2004,29(2):177-181.PENG Suping,GAO Yunfeng,PENG Xiaobo,et al.Study on the rock physic parameters of coal bearing strata in Huainan coalfield[J].Journal of China Coal Society,2004,29(2):177-181.
    [6]孟召平,刘常青,贺小黑,等.煤系岩石声波速度及其影响因素实验分析[J].采矿与安全工程学报,2008,25(4):389-393.MENG Zhaoping,LIU Changqing,HE Xiaohei,et al. Mechanical properties of soft rock under dynamic uniaxial compression[J].Journal of Mining&Safety Engineering,2008,25(4):389-393.
    [7]高春艳,高全臣,江斌,等.朱集煤矿泥岩的流变试验与本构模型研究[J].长江科学院院报,2015,32(5):76-81.GAO Chunyan,GAO Quanchen,JIANG Bin,et al. Rheological test and constitutive model ofmudstone of Zhuji coal Mine[J].Journal of Yangtze River Scientific Research Institute,2015,32(5):76-81.
    [8]许宝田,阎长虹,许宏发.三轴试验泥岩应力-应变特性分析[J].岩土工程学报,2004,26(6):863-865.XU Baotian,YAN Changhong,XU Hongfa. Triaxial tests on stressstrain of mud stone[J]. Chinese Journal of Geotechnical Engineering,2004,26(6):863-865.
    [9]赵光明,谢理想,孟祥瑞.软岩的动态力学本构模型[J].爆炸与冲击,2013,33(2):126-132.ZHAO Guangming,XIE Lixiang,MENG Xiangrui.Dynamic mechanical constitutive model of soft rock[J]. Explosion and Shock Waves,2013,33(2):126-132.
    [10]解北京,王新艳,吕平洋.层理煤岩SHPB冲击破坏动态力学特性实验[J].振动与冲击,2017,36(21):117-124.XIE Beijing,WANG Xinyan,LPingyang. Dynamic mechanical properties of bedding coal and rock impact damage SHPB testing[J].Journal of Vibration and Shock,2017,36(21):117-124.
    [11]谢和平,彭瑞东,鞠杨,等.岩石破坏的能量分析初探[J].岩石力学与工程学报,2005,24(15):2063-2068.XIE Heping,PENG Ruidong,JU Yang,et al. On energy analysis of rock failure[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(15):2063-2068.
    [12]平琦,骆轩,马芹永,等.冲击载荷作用下砂岩试件破碎能耗特征[J].岩石力学与工程学报,2015,34(S2):4197-4203.PING Qi,LUO Xuan,MA Qingyong,et al. Broken energy dissipayion characteristics of sandstone specimens under impact load[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(S2):4197-4203.
    [13]曹丽丽,浦海,李明,等.煤系砂岩动态拉伸破坏及能量耗散特征的试验研究[J].煤炭学报,2017,42(2):492-499.CAO Lili,PU Hai,LI Ming,et al.Experimental research on the dynamic tensile fracture and the energy dissipation characteristics of coal-serial sandstone[J] Journal of China Coal Society,2017,42(2):492-499.
    [14]刘晓辉,张茹,刘建锋.不同应变率下煤岩冲击动力试验研究[J].煤炭学报,2012,37(9):1528-1534.LIU Xiaohui,ZHANG Ru,LIU Jianfeng.Dynamic shock test of coal and rock under different strain rates[J].Journal of China Coal Society,2012,37(9):1528-1534.
    [15]宋力,胡时胜.SHPB数据处理中的二波法与三波法[J].爆炸与冲击,2005,25(4):368-373.SONG Li,HU Shisheng. Two-wave and three-wave method in SHPB data processing[J]. Explosion and Shock Waves,2005,25(4):368-373.
    [16]李夕兵.岩石动力学基础与应用[M].北京:科学出版社,2014.
    [17]陶俊林,陈裕泽,田常津,等.SHPB系统圆柱形试件的惯性效应分析[J].固体力学学报,2005,26(1):107-110.TAO Junlin,CHEN Yuze,TIAN Changjin,et al.Analysis of the inertial effect of the cylindrical specimen in SHPB system[J]. Acta Mechanica Solida Sinca,2005,26(1):107-110.
    [18]洪亮.冲击荷载下岩石强度及破碎能耗特征的尺寸效应研究[D].长沙:中南大学,2008.HONG Liang.Size effect on strength and energy dissipation in fracture of rock under impact loads[D]. Changsha:Center South University,2008.
    [18] ZHOU Y X,XIA K,LI X B,et al.Suggested methods for determining the dynamic strength parameters and mode I fracture toughness of rock materials[J]. Internation Journal of Rock Mechanics and Mining Sciences,2012,49:105-112.
    [20]单仁亮.岩石冲击破坏力学模型及其随机性的研究[D].北京:中国矿业大学(北京),1997.SHAN Renliang. Research on the mechnical model and random properties of rock failure under impact loading[D]. Beijing:China University of Mining and Technology(Beijing),1997.
    [21]赵光明,马文伟,孟祥瑞.动载作用下岩石类材料破坏模式及能量特性[J].岩土力学,2015,36(12):3598-3605.ZHAO Guangming,MA Wenwei,MENG Xiangrui. Damage modes and energy characteristics of rock-like materials under dynamic load[J]Rock and Soil Mechanics,2015,36(12):3598-3605.
    [22]李晓锋,李海波,刘凯,等.冲击荷载作用下岩石动态力学特性及破裂特征研究[J].岩石力学与工程学报,2017,36(10):2393-2405.LI Xiaofeng,LI Haibo,LIU Kai,et al.Dynamic properties and fracture characteristics of rocks subject to impact loading[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(10):2393-2405.
    [23]张华.冲击荷载作用下岩石动态损伤特性研究[D].昆明:昆明理工大学,2009.ZHANG Hua.Dynamic damage characteristics of rock under impact loading[D].Kunming:Kunming University of Science and Technology,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700