用户名: 密码: 验证码:
厚覆基岩下煤层开采突水溃砂机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on mechanism of water inrush and sand inrush in mining of coal seam with thick overlying bedrock
  • 作者:彭涛 ; 冯西会 ; 龙良良 ; 王英 ; 牛超 ; 刘英锋
  • 英文作者:PENG Tao;FENG Xihui;LONG Liangliang;WANG Ying;NIU Chao;LIU Yingfeng;College of Geology and Environment,Xi'an University of Science and Technology;Geological Research Institute for Coal Green Mining,Xi'an University of Science and Technology;Key Laboratory of Coal Resources Exploration and Comprehensive Utilization,Ministry of Land and Resources;Xi'an Research Institute China Coal Technglogy Engineering Group Corp.;
  • 关键词:突水溃砂 ; 导水裂隙带 ; 较厚基岩 ; 形成机理
  • 英文关键词:water inrush and sand inrush;;fractured water-conducting zone;;thick bedrock;;formation mechanism
  • 中文刊名:MTKJ
  • 英文刊名:Coal Science and Technology
  • 机构:西安科技大学地质与环境学院;西安科技大学煤炭绿色开采地质研究院;国土资源部煤炭资源勘查与综合利用重点实验室;中煤科工集团西安研究院有限公司;
  • 出版日期:2019-07-15
  • 出版单位:煤炭科学技术
  • 年:2019
  • 期:v.47;No.536
  • 基金:国家自然科学基金青年科学基金资助项目(41807192);; 陕西省教育厅2018年度专项科学研究计划资助项目(18JK0518)
  • 语种:中文;
  • 页:MTKJ201907035
  • 页数:5
  • CN:07
  • ISSN:11-2402/TD
  • 分类号:265-269
摘要
为了揭示较厚上覆基岩煤层开采顶板突水溃砂灾害的形成机理,以照金煤矿突水溃砂事故为例,结合最新补勘地质资料,从导水通道、充水水源、物源、储水空间、动力源和地质构造等多方面对该类型灾害机制进行综合分析。研究结果表明:在采动条件影响下,富水性弱~中等的洛河组含水层也可能发生破坏极大的水害事故;较厚上覆基岩煤层开采顶板突水溃砂的发生并非单一因素造成,而是由多个因素相互作用最终造成水砂混合流运移和突溃的现象;照金矿202工作面综放开采产生的导水裂隙带导通洛河组含水层,水进入宜君组与直罗组之间的离层空腔,随着积水量增加,渗入煤系含水层和古河床相松散体中形成似泥石流体,并会沿工作面切落形成的集中通道瞬间溃入工作面,导致煤层顶板上覆较厚基岩发生突水溃砂。
        To reveal the formation mechanism of water inrush and sand inrush disasters from the roof when mining coal seams with thick overlying bedrock,this paper takes the intrusion accident of water and sand in Zhaojin Coal Mine as an example. Combined with the latest supplementary geological data,a comprehensive analysis was conducted on the mechanism of this disaster from many aspects such as channel,water source,source,water storage space,power source and geological structure. The results show that under the influence of mining conditions,the Luohe Formation aquifers with weak and medium water-rich may also suffer from great water accidents. The intrusion of water and sand from the roof when mining the coal seam with thick overlying bedrock is not caused by a single factor. In fact,it is caused by the interaction of multiple factors,which ultimately leads to movement and collapse of the mixed water and sand flowing. The water flowing fractured zone generated during the fully mechanized caving mining of the No.202 longwall face causes the aquifer water of Luohe Formation to enter the separated cavity between Yijun Formation and Zhiluo Formation. As the amount of accumulated water increases,the water in the separated cavity penetrates into the coal measures aquifer and the ancient riverbed phase loose body to form a mud-like fluid.The mud-like fluid instantaneously breaks into the longwall surface along the concentrated channel generated by cutting the longwall face.This leads to the invasion of water and sand in the coal seam roof with a thick bedrock.
引文
[1]李东,刘生优,张光德,等.鄂尔多斯盆地北部典型顶板水害特征及其防治技术[J].煤炭学报,2017,42(12):3249-3254.LI Dong,LIU Shengyou,ZHANG Guangde,et al.Typical roof water disasters and its prevention&control technology in the north of Ordos Basin[J].Journal of China Coal Society,2017,42(12):3249-3254.
    [2]范立民,马雄德.浅埋煤层矿井突水溃沙灾害研究进展[J].煤炭科学技术,2017,44(1):8-12.FAN Limin,MA Xiongde.Research progress of water inrush hazard in shallow buried coal seam mine[J]. Coal Science and Technology,2017,44(1):8-12.
    [3]杨鑫,徐曾和,杨天鸿.西部典型矿区风积沙含水层突水溃沙的起动条件与运移特征[J].岩土力学,2017,39(1):21-28,35.YANG Xin,XU Zenghe,YANG Tianhong.Incipience condition and migration characteristics of aeolian-sandaquifer in a typical western mine[J].Rock and Soil Mechanics,2017,39(1):21-28,35.
    [4]李江华,许延春,董检平,等.风化泥岩裂缝涌水及扩展规律模拟试验研究[J].煤炭学报,2016,41(4):984-991.LI Jianghua,XU Yanchun,DONG Jianping,et al. Experimental research on water burst and extension law of weathered mudstone crack[J].Journal of China Coal Society,2016,41(4):984-991.
    [5]隋旺华,王丹丹,孙亚军,等.矿山水文地质结构及其采动响应[J].工程地质学报,2019,27(1):21-28.SUI Wanghua,WANG Dandan,SUN Yajun,etal.Mine hydrogeological structure and its responses to mining[J]. Journal of Engineering Geology,2019,27(1):21-28.
    [6]隋旺华,梁艳坤,张改玲,等.采掘中突水溃砂机理研究现状及展望[J].煤炭科学技术,2011,39(11):5-9.SUI Wanghua,LIANG Yankun,ZHANG Gailing,et al. study status and outlook of risk evaluation on water inrush and sand inrush mechanism of excavation and mining[J]. Coal Science and Technology,2011,39(11):5-9.
    [7]赵启峰,张农,韩昌良,等.浅埋薄基岩含水层下煤层开采突水溃砂相似模拟实验研究[J].采矿与安全工程学报,2017,34(3):444-451.ZHAO Qifeng,ZHANG Nong,HAN Changliang,et al. Simulation experiment of water-sand inrush during the mining of the shallow coal seam under roof aquifer with thin bedrock[J]. Journal of Mining&Safety Engineering,2017,34(3):444-451.
    [8]张杰,杨涛,索永录,等.基于隔水土层失稳模型的顶板突水致灾预测研究[J].煤炭学报,2017,42(10):2718-2724.ZHANG Jie,YANG Tao,SUO Yonglu,et al.Roof water-inrush disaster forecast based on the model of aquiclude instability[J].Journal of China Coal Society,2017,42(10):2718-2724.
    [9]李江华,许延春,姜鹏,等.巨厚松散层薄基岩工作面覆岩载荷传递特征研究[J].煤炭科学技术,2017,45(11):95-100.LI Jianghua,XU Yanchun,JIANG Peng,et al.Study on load transmission characteristics of overburden rock above coal mining face in thin bedrock of super thick unconsolidated stratum[J].Coal Science and Technology,2017,45(11):95-100.
    [10]许海涛,康庆涛.厚松散层薄基岩煤层开采突水溃砂风险评价[J].煤矿开采,2017,22(3):78-81.XU Haitao,KANG Qingtao. Risk assessment of water and sands burst of coal seam mining with thick loose layer and thin bedrock[J].Coal Mining Technology,2017,22(3):78-81.
    [11]张坤.厚松散沙层下富水顶板采煤突水溃沙危险性分区[J].煤矿安全,2018,49(5):191-193,197.ZHANG Kun. Risk Zoning of water inrush and sand bursting under water abundance roofand thick loose sand layer[J]. Safety in Coal Mines,2018,49(5):191-193,197.
    [12]许延春,杜明泽,李江华,等.水压作用下防砂安全煤岩柱失稳机理及留设方法[J].煤炭学报,2017,42(2):328-334.XU Yanchun,DU Mingze,LI Jianghua,et al. Instability mechanism and design method of coal and rock pillar under water pressure[J].Journal of China Coal Society,2017,42(2):328-334.
    [13]杜锋,曹正正,李振华.破碎岩体水沙两相渗透特性研究进展[J].煤炭科学技术,2018,46(7):48-53.DU Feng,CAO Zhengzheng,LI Zhenhua.Research progress of two phase water-sand flow characteristics in crushed rock mass[J].Coal Science and Technology,2018,46(7):48-53.
    [14]王海,王晓东,曹祖宝,等.冻结井壁解冻过程中突水溃砂机理及防治技术[J].煤炭科学技术,2019,47(2):21-26.WANG Hai,WANG Xiaodong,CAO Zubao,et al. Mechanism and prevention technology of water inrush and sand in-rush occurred in thawing process of mine freezing shaft wall[J]. Coal Science and Technology,2019,47(2):21-26.
    [15]周振方,曹海东,朱明诚,等.水泥-水玻璃双液浆在工作面顶板突水溃砂治理中的应用[J].煤田地质与勘探,2018,46(6):121-127.ZHOU Zhenfang,CAO Haidong,ZHU Mingcheng,et al.Application of cement-sodium silicate mixed grout in control of water and sand bursting from roof of the working face[J]. Coal Geology&Exploration,2018,46(6):121-127.
    [16]童世杰.任楼煤矿No.7240(上)南工作面突水溃砂原因及防范对策[J].煤矿安全,2014,45(8):117-121.TONG Shijie.Reasons and prevention measures of water and sand inrush at 7240(upper)southern working face in Renlou Coal Mine[J].Safety in Coal Mines,2014,45(8):117-121.
    [17]国家安全监管总局,国家煤矿安监局,国家能源局,等.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[M].北京:煤炭工业出版社,2017.
    [18]梁艳坤,隋旺华,朱涛,等.哈拉沟煤矿垮落带破碎岩体溃砂的离散元数值模拟研究[J].煤炭学报,2017,42(2):470-476.LIANG Yankun,SUI Wanghua,ZHU Tao,et al.Numerical simulation of quicksand through broken rocks in caving zone due to coal mining based on DEM[J]. Journal of China Coal Society,2017,42(2):470-476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700