用户名: 密码: 验证码:
基于人工超表面/离子凝胶/石墨烯复合结构的太赫兹调幅器件
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Terahertz Amplitude Modulator Based on Metasurface/Ion-Gel/Graphene Hybrid Structure
  • 作者:袁莹辉 ; 陈勰宇 ; 胡放荣 ; 熊显名 ; 张文涛 ; 韩家广
  • 英文作者:Yuan Yinghui;Chen Xieyu;Hu Fangrong;Xiong Xianming;Zhang Wentao;Han Jiaguang;School of Electronic Engineering and Automation, Guilin University of Electronic Technology;Center for THz Waves, College of Precision Instrument and Optoelectronics Engineering,Tianjin University;Guangxi Key Laboratory of Optoelectronics Information Processing;
  • 关键词:太赫兹技术 ; 太赫兹调幅器件 ; 石墨烯 ; 离子凝胶 ; 人工超表面
  • 英文关键词:terahertz technology;;terahertz amplitude modulator;;graphene;;ion-gel;;metasurface
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:桂林电子科技大学电子工程与自动化学院;天津大学精密仪器与光电子工程学院太赫兹研究中心;广西光电信息处理重点实验室;
  • 出版日期:2019-06-10
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.510
  • 基金:国家自然科学基金(61875150)
  • 语种:中文;
  • 页:JJZZ201906017
  • 页数:9
  • CN:06
  • ISSN:31-1339/TN
  • 分类号:194-202
摘要
设计并制备了基于人工超表面/离子凝胶/石墨烯复合结构的太赫兹调幅器件,并对其调制效果进行了模拟仿真和实验验证。该器件以嵌在石墨烯和超表面之间的离子凝胶为电解质,以石墨烯为主动材料,用超表面实现太赫兹波与石墨烯相互作用的增强。通过外加偏压调节石墨烯的电导率,进而达到对太赫兹波的主动控制。结果表明:该器件在较小的外加偏压下就可以在谐振频率处实现73%的调制深度,并且在调制过程中谐振频率几乎保持不变。该器件为小电压下的大幅度太赫兹调制提供了一种新手段。
        In this study, a terahertz amplitude modulator based on metasurface/ion-gel/graphene hybrid structure was designed and fabricated. The modulation performance of the device was simulated and experimentally demonstrated. This device uses the ion-gel medium embedded between graphene and metasurface as the electrolyte, and the graphene as the active material. The enhancement of the interaction between terahertz wave and graphene is realized on the metasurface. Further, an external bias voltage was used to tune the electrical conductivity of graphene for actively controlling the terahertz waves. The results indicate that the device can achieve a modulation depth of up to 73% at the resonant frequency with a relatively small bias voltage. Moreover, the resonant frequency remains almost constant in the modulation process. Thus, the proposed device provides one novel tool in the large terahertz amplitude modulation under low voltages.
引文
[1] Tonouchi M.Cutting-edge terahertz technology[J].Nature Photonics,2007,1(2):97-105.
    [2] Zhang X C,Xu J Z.Introduction to THz wave photonics[M].Boston,MA:Springer:2010.
    [3] Seifert T,Jaiswal S,Martens U,et al.Efficient metallic spintronic emitters of ultrabroadband terahertz radiation[J].Nature Photonics,2016,10(7):483-488.
    [4] Zheludev N I.The road ahead for metamaterials[J].Science,2010,328(5978):582-583.
    [5] Yu N F,Capasso F.Flat optics with designer metasurfaces[J].Nature Materials,2014,13(2):139-150.
    [6] Glybovski S B,Tretyakov S A,Belov P A,et al.Metasurfaces:from microwaves to visible[J].Physics Reports,2016,634:1-72.
    [7] Li Q,Zhang X Q,Cao W,et al.An approach for mechanically tunable,dynamic terahertz bandstop filters[J].Applied Physics A,2012,107(2):285-291.
    [8] Chen M,Fan F,Yang L,et al.Mechanically tunable terahertz plasmonic waveguide filter[J].Chinese Journal of Lasers,2016,43(4):0411001.陈猛,范飞,杨磊,等.机械可调谐太赫兹等离子体波导滤波器[J].中国激光,2016,43(4):0411001.
    [9] Zhang X Q,Xu N N,Qu K N,et al.Electromagnetically induced absorption in a three-resonator metasurface system[J].Scientific Reports,2015,5:10737.
    [10] Li Q,Tian Z,Zhang X Q,et al.Active graphene-silicon hybrid diode for terahertz waves[J].Nature Communications,2015,6:7082.
    [11] Cong L Q,Xu N N,Zhang W L,et al.Polarization control in terahertz metasurfaces with the lowest order rotational symmetry[J].Advanced Optical Materials,2015,3(9):1176-1183.
    [12] Zhang H F,Kang M,Zhang X Q,et al.Coherent control of optical spin-to-orbital angular momentum conversion in metasurface[J].Advanced Materials,2017,29(6):1604252.
    [13] Geim A K.Graphene:status and prospects[J].Science,2009,324(5934):1530-1534.
    [14] Kampfrath T,Perfetti L,Schapper F,et al.Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite[J].Physical Review Letters,2005,95(18):187403.
    [15] Li Z Q,Henriksen E A,Jiang Z,et al.Dirac charge dynamics in graphene by infrared spectroscopy[J].Nature Physics,2008,4(7):532-535.
    [16] Kuzmenko A B,van Heumen E,Carbone F,et al.Universal optical conductance of graphite[J].Physical Review Letters,2008,100(11):117401.
    [17] Ishigami M,Chen J H,Cullen W G,et al.Atomic structure of graphene on SiO2[J].Nano Letters,2007,7(6):1643-1648.
    [18] Sensale-Rodriguez B,Yan R S,Kelly M M,et al.Broadband graphene terahertz modulators enabled by intraband transitions[J].Nature Communications,2012,3:780.
    [19] Guo T J,Argyropoulos C.Broadband polarizers based on graphene metasurfaces[J].Optics Letters,2016,41(23):5592-5595.
    [20] Andryieuski A,Lavrinenko A V.Graphene metamaterials based tunable terahertz absorber:effective surface conductivity approach[J].Optics Express,2013,21(7):9144-9155.
    [21] Amin M,Farhat M,Ba.An ultra-broadband multilayered graphene absorber[J].Optics Express,2013,21(24):29938-29948.
    [22] Min Woo J,Kim M S,Woong Kim H,et al.Graphene based salisbury screen for terahertz absorber[J].Applied Physics Letters,2014,104(8):081106.
    [23] Li Q,Tian Z,Zhang X Q,et al.Dual control of active graphene-silicon hybrid metamaterial devices[J].Carbon,2015,90:146-153.
    [24] Gao H,Yan F P,Tan S Y,et al.Design of ultra-thin broadband terahertz metamaterial absorber based on patterned graphene[J].Chinese Journal of Lasers,2017,44(7):0703024.高红,延凤平,谭思宇,等.基于有图案石墨烯的超薄宽带太赫兹超材料吸收体的设计[J].中国激光,2017,44(7):0703024.
    [25] Kim T T,Oh S S,Kim H D,et al.Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials[J].Science Advances,2017,3(9):e1701377.
    [26] Liu W G,Hu B,Huang Z D,et al.Graphene-enabled electrically controlled terahertz meta-lens[J].Photonics Research,2018,6(7):703-708.
    [27] Luxmoore I J,Gan C H,Liu P Q,et al.Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide[J].ACS Photonics,2014,1(11):1151-1155.
    [28] Gusynin V P,Sharapov S G,Carbotte J P.Magneto-optical conductivity in graphene[J].Journal of Physics:Condensed Matter,2007,19(2):026222.
    [29] Chen P Y,Alù A.Atomically thin surface cloak using graphene monolayers[J].ACS Nano,2011,5(7):5855-5863.
    [30] Deokar G,Avila J,Razado-Colambo I,et al.Towards high quality CVD graphene growth and transfer[J].Carbon,2015,89:82-92.
    [31] Grischkowsky D,Keiding S,van Exter M,et al.Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors[J].Journal of the Optical Society of America B,1990,7(10):2006-2015.
    [32] Wu Y,La-O-vorakiat C,Qiu X P,et al.Graphene terahertz modulators by ionic liquid gating[J].Advanced Materials,2015,27(11):1874-1879.
    [33] Lee K H,Kang M S,Zhang S P,et al.“cut and stick” rubbery ion gels as high capacitance gate dielectrics[J].Advanced Materials,2012,24(32):4457-4462.
    [34] Yan R S,Arezoomandan S,Sensale-Rodriguez B,et al.Exceptional terahertz wave modulation in graphene enhanced by frequency selective surfaces[J].ACS Photonics,2016,3(3):315-323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700