用户名: 密码: 验证码:
改进型MRAS速度传感器的轴承异步电机矢量控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Vector control of speed sensorless bearingless induction motors using improved MRAS
  • 作者:孙宇新 ; 唐敬伟 ; 施凯 ; 朱熀秋
  • 英文作者:SUN Yu-xin;TANG Jing-wei;SHI Kai;ZHU Huang-qiu;School of Electrical and Information Engineering, Jiangsu University;
  • 关键词:轴承异步电动机 ; 改进模型 ; MRAS ; ISOGI–FLL ; 转子磁链定向 ; 速度传感器
  • 英文关键词:bearingless induction motor;;improved model;;MRAS;;ISOGI–FLL;;rotor flux orientation;;speed sensorless
  • 中文刊名:KZLY
  • 英文刊名:Control Theory & Applications
  • 机构:江苏大学电气信息工程学院;
  • 出版日期:2019-06-15
  • 出版单位:控制理论与应用
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金资助项目(51675244);; 江苏省重点研发计划项目(BE2016150);; 江苏高校优势学科建设工程项目资助~~
  • 语种:中文;
  • 页:KZLY201906013
  • 页数:12
  • CN:06
  • ISSN:44-1240/TP
  • 分类号:101-112
摘要
轴承异步电机(BIM)的转子磁链电压模型中含有纯积分环节,其积分初值和累计误差会影响磁链观测精度,进而使转速估计产生严重失真.为了实现BIM速度传感器运行,本文借鉴模型参考自适应法(MRAS)基本结构,将改进二阶广义积分器与锁频环结合以代替原有纯积分器,提出了一种新的基于MRAS的BIM速度传感器控制方法,构建了BIM转子磁链定向速度传感器矢量控制系统.并且,基于MATLAB/Simulink的仿真验证和基于dSPACE的实验结果表明:与传统电压模型观测方法相比,所提出的转子磁链电压模型有效避免了纯积分环节带来的直流偏移和积分初值影响,有着更好的观测效果.同时,基于轴承异步电机转子磁链定向速度传感器矢量控制系统,电机能稳定悬浮运行,估算转速和实测转速具有很好的一致性.
        Because of the pure integrator of rotor flux voltage model in bearingless Induction Motor(BIM), the initial value and cumulative error of integral affect the observation precision of the magnetic linkage, and makes the speed estimation seriously distorted. In order to realize the speed sensorless operation of BIM, this paper learns from the basic structure of model reference adaptive system(MRAS), and adopts second-order generalized integrator with frequency locked loop to replace the original pure integrator. That is, a novel BIM speed sensorless control method based on MRAS is proposed, and a vector control system of BIM speed sensorless sensor with rotor flux oriented is constructed. Furthermore, the simulation results of MATLAB/Simulink system and the experimental results of d SPACE show that the proposed rotor flux linkage voltage model effectively avoids the influence of DC offset and integral value caused by pure integral comparing with the traditional voltage model observation method. Moreover, the motor can be stably suspended on BIM speed sensorless control system, and the estimated speed is highly consistent with the measured speed.
引文
[1] CHIBA A. Bearingless induction motors. Magnetic Bearings and Bearingless Drives, DOI:10.1016/B978-075065727-3/50016-X,2005:251–273.
    [2] ZHU Huangqiu, CHEN Jinhai, ZUO Wenquan. Principle and control system design for bearingless permanent magnet slice motor pump.Journal of Drainage and Irrigation Machinery Engineering, 2012,30(5):517–521.(朱熀秋,陈金海,左文全.轴承永磁薄片电动机泵原理及控制系统设计.排灌机械工程学报, 2012, 30(5):517–521.)
    [3] SUN Yuxin, QIAN Zhongbo. Independent RBFNN inverse decoupling control of the levitation subsystem of bearingless induction motor for NC machine. Journal of Vibration and Shock, 2016, 35(21):196–202.(孙宇新,钱忠波.数控机床高速轴承异步电动机悬浮子系统RBFNN逆独立解耦控制.振动与冲击, 2016, 35(21):196–202.)
    [4] SUN Yuxin, YANG Yuwei. Adaptive inverse control for levitation system of bearingless induction motors based on nonlinear filters.Control Theory&Applications, 2016, 33(3):304–310.(孙宇新,杨玉伟.轴承异步电机悬浮系统的非线性滤波器自适应逆控制.控制理论与应用, 2016, 33(3):304–310.)
    [5] BU Wenshao, ZU Conglin, LU Chunxiao. Decoupling control strategy of bearingless induction motor under the conditions of considering current dynamic characteristics. Control Theory&Applications,2014, 31(11):1561–1567.(卜文绍,祖从林,路春晓.考虑电流动态的轴承异步电机解耦控制策略.控制理论与应用, 2014, 31(11):1561–1567.)
    [6] YANG Zebin, SUN Xiaodong, ZHU Huangqiu, et al. Key technologies and development trend of bearingless induction. China Mechanical Engineering Motors, 2013, 24(12):1695–1703.(杨泽斌,孙晓东,朱熀秋,等.轴承异步电机关键技术与发展趋势.中国机械工程, 2013, 24(12):1695–1703.)
    [7] CHIBAH A, MENAA M, YAZID K. Rotor speed estimation of doubly fed induction motor using high frequency carrier signal injection.Power Electronics and Motion Control Conference and Exposition.IEEE, 2014:751–756.
    [8] YANG Zebin, LI Fangli, CHEN Zheng, et al. Revolving speed selfdetecting control based on low frequency signal injection for bearingless induction motor. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(2):41–47.(杨泽斌,李方利,陈正,等.基于低频信号注入法的轴承异步电机转速自检测控制.农业工程学报, 2017, 33(2):41–47.)
    [9] YANG Zebin, FAN Rong, SUN Xiaodong, et al. Speed-sensorless control system of bearingless induction motor based on the extended Kalman filte. Chinese Journal of Scientific Instrument, 2015, 36(5):1023–1030.(杨泽斌,樊荣,孙晓东,等.基于EKF的轴承异步电机速度传感器控制.仪器仪表学报, 2015, 36(5):1023–1030.)
    [10] XU Bo, ZHU Huangqiu, JI Wei, et al. Modified square root unscented Kalman filter and its application to speed sensorless control of bearingless permanent magnet synchronous motor. Control Theory&Applications, 2012, 29(1):53–58.(许波,朱熀秋,姬伟,等.改进型平方根迹卡尔曼滤波及其在轴承永磁同步电机速度传感器运行中的应用.控制理论与应用,2012, 29(1):53–58.)
    [11] YIN Zhonggang, ZHANG Ruifeng, ZHONG Yanru, et al. Speed estimation for permanent magnet synchronous motor based on robust extended Kalman filter. Control Theory&Applications, 2012, 29(7):921–927.(尹忠刚,张瑞峰,钟彦儒,等.基于抗差扩展卡尔曼滤波器的永磁同步电机转速估计策略.控制理论与应用, 2012, 29(7):921–927.)
    [12] TENG Qingfang, BAI Jianyong, ZHU Jianguo, et al. Sensorless model predictive torque control using sliding-mode model reference adaptive system observer for permanent magnet synchronous motor drive systems. Control Theory&Applications, 2015, 32(2):150–161.(滕青芳,柏建勇,朱建国,等.基于滑模模型参考自适应观测器的速度传感器三相永磁同步电机模型预测转矩控制.控制理论与应用,2015, 32(2):150–161.)
    [13] GAO Jian, HUANG Shoudao, MA Xiaofeng, et al. Speed sensorless vector control system of bearingless induction motors based on mutual MRAS scheme. Transactions of China Electrical Society, 2008,23(11):41–46.(高剑,黄守道,马晓枫,等.基于交互式MRAS策略的轴承异步电机速度传感器矢量控制系统.电工技术学报, 2008, 23(11):41–46.)
    [14] PARK J S, NGUYEN T H, LEE D C. Advanced SOGI–FLL scheme based on fuzzy logic for single phase grid connected converters. Journal of Power Electronics, 2014, 14(14):598–607.
    [15] PATIL K R, PATEL H H. Modified dual second-order generalized integrator FLL for frequency estimation under various grid abnormalities. Transactions on Environment&Electrical Engineering, 2016,1(4):10–18.
    [16] XUE Shangqing, CAI Jinding. Detection of fundamental positive and negative sequence components based on second-order generalized integrator. Electric Power Automation Equipment, 2011, 31(11):69–73.(薛尚青,蔡金锭.基于二阶广义积分器的基波正负序分量检测方法.电力自动化设备, 2011, 31(11):69–73.)
    [17] SHAO Zhenhua, CHEN Chong, LIN Ruiquan. Harmonic current detection with adaptive frequency tracking based on multiple secondorder generalized integrators. Electric Power Automation Equipment,2012, 32(6):51–55.(邵振华,陈冲,林瑞全,基于复合二阶广义积分的频率自适应谐波电流检测.电力自动化设备, 2012, 32(6):51–55.)
    [18] DENG Zhe, ZHOU Fengwu, LIN Huipin, et al. A Novel Fast grid synchronization method under grid failure based on dual-input SOGI–FLL. Transactions of China Electrical Society, 2013, 28(12):32–43.(邓哲,周峰武,林辉品,等.电网故障时基于双输入SOGI–FLL的新型电网快速同步方法.电工技术学报, 2013, 28(12):32–43.)
    [19] XIN Zhen, ZHAO Rende, CHEN Chen, et al. New induction motor synchronous angular frequency estimation method based on dual second order generalized integrator—frequency locked loop. Proceedings of the CSEE, 2014, 34(27):4676–4682.(辛振,赵仁德,陈晨,等.基于双二阶广义积分器—锁频环的异步电机同步角频率估计方法.中国电机工程学报, 2014, 34(27):4676–4682.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700